
R M M
ROMANIAN MATHEMATICAL MAGAZINE

Founding EditorFounding Editor
DANIEL SITARUDANIEL SITARU

Available onlineAvailable online
www.ssmrmh.rowww.ssmrmh.ro

ISSN-L 2501-0099ISSN-L 2501-0099

RMM - Cyclic Inequalities Marathon 2001 - 2100RMM - Cyclic Inequalities Marathon 2001 - 2100



 
www.ssmrmh.ro 

1 RMM-CYCLIC INEQUALITIES MARATHON 2001-2100 

 

Proposed by  

Nguyen Hung Cuong-Vietnam, Dang Ngoc Minh-Vietnam 

Zaza Mzhavanadze-Georgia, Marin Chirciu-Romania 

D.M.Bătinețu-Giurgiu-Romania, Mihaly Bencze-Romania 

Gheorghe Crăciun-Romania, Mehmet Șahin-Turkiye 

Neculai Stanciu-Romania, Mais Hasanov-Azerbaijan 

Dorin Mărghidanu-Romania 

 



 
www.ssmrmh.ro 

2 RMM-CYCLIC INEQUALITIES MARATHON 2001-2100 

 

Solutions by 

Soumava Chakraborty-India, Tapas Das-India 

Daniel Sitaru-Romania, Mirsadix Muzefferov-Azerbaijan 

Qurban Mueelim-Azerbaijan, Amin Hajiyev-Azerbaijan 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
www.ssmrmh.ro 

3 RMM-CYCLIC INEQUALITIES MARATHON 2001-2100 

 

2001. 𝐈𝐟 𝒂, 𝐛, 𝐜 > 𝟎 𝒂𝐧𝐝 𝒂𝐛𝐜(𝒂 + 𝐛 + 𝐜) = 𝟑 𝐭𝐡𝐞𝐧 𝐩𝐫𝐨𝐯𝐞 𝐭𝐡𝒂𝐭 ∶ 

𝒂 + 𝐛 + 𝐜

√𝒂𝟐 + 𝟑+ √𝐛𝟐 + 𝟑 + √𝐜𝟐 + 𝟑
≥
𝟏

𝟐
 

  Proposed by Nguyen Hung Cuong-Vietnam 

Solution by Soumava Chakraborty-Kolkata-India 

 
𝒂 + 𝐛 + 𝐜

√𝒂𝟐 + 𝟑 + √𝐛𝟐 + 𝟑 + √𝐜𝟐 + 𝟑
≥
𝐂𝐁𝐒 ∑ 𝒂𝐜𝐲𝐜

√𝟑(∑ 𝒂𝟐𝐜𝐲𝐜 + 𝟗)

≥
? 𝟏

𝟐
 

⇔ 𝟒(∑𝒂

𝐜𝐲𝐜

)

𝟐

− 𝟑∑𝒂𝟐

𝐜𝐲𝐜

≥
?
𝟐𝟕 

⇔ (𝟒(∑𝒂

𝐜𝐲𝐜

)

𝟐

− 𝟑∑𝒂𝟐

𝐜𝐲𝐜

)

𝟐

≥
?
𝟐𝟒𝟑𝒂𝐛𝐜(∑𝒂

𝐜𝐲𝐜

) (∵ 𝒂𝐛𝐜(∑𝒂

𝐜𝐲𝐜

) = 𝟑) 

⇔∑𝒂𝟒

𝐜𝐲𝐜

+ 𝟏𝟔∑𝒂𝟑𝐛

𝐜𝐲𝐜

+ 𝟏𝟔∑𝒂𝐛𝟑

𝐜𝐲𝐜

+ 𝟔𝟔∑𝒂𝟐𝐛𝟐

𝐜𝐲𝐜

≥
?
𝟗𝟗𝒂𝐛𝐜(∑𝒂

𝐜𝐲𝐜

) → 𝐭𝐫𝐮𝐞 

∵∑𝒂𝟒

𝐜𝐲𝐜

+ 𝟏𝟔∑𝒂𝟑𝐛

𝐜𝐲𝐜

+ 𝟏𝟔∑𝒂𝐛𝟑

𝐜𝐲𝐜

+ 𝟔𝟔∑𝒂𝟐𝐛𝟐

𝐜𝐲𝐜

≥
𝐀𝐌−𝐆𝐌

 

∑𝒂𝟐𝐛𝟐

𝐜𝐲𝐜

+ 𝟑𝟐∑𝒂𝟐𝐛𝟐

𝐜𝐲𝐜

+ 𝟔𝟔∑𝒂𝟐𝐛𝟐

𝐜𝐲𝐜

≥ 𝟗𝟗𝒂𝐛𝐜(∑𝒂

𝐜𝐲𝐜

) 

∴
𝒂 + 𝐛 + 𝐜

√𝒂𝟐 + 𝟑 + √𝐛𝟐 + 𝟑 + √𝐜𝟐 + 𝟑
≥
𝟏

𝟐
 ∀ 𝒂, 𝐛, 𝐜 > 𝟎│𝒂𝐛𝐜(𝒂 + 𝐛 + 𝐜) = 𝟑, 

′′ =′′  𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 = 𝟏 (𝐐𝐄𝐃) 
 

2002. 𝐈𝐟 𝒂, 𝐛, 𝐜 > 𝟎 𝒂𝐧𝐝 𝒂 + 𝐛 + 𝐜 = 𝒂𝐛 + 𝐛𝐜 + 𝒄𝒂  𝐭𝐡𝐞𝐧 𝐩𝐫𝐨𝐯𝐞 𝐭𝐡𝒂𝐭 ∶ 

𝟑

𝟏 + 𝒂
+

𝟑

𝟏 + 𝐛
+

𝟑

𝟏 + 𝐜
−

𝟒

(𝟏 + 𝒂)(𝟏 + 𝐛)(𝟏 + 𝐜)
≥ 𝟒 

  Proposed by Nguyen Hung Cuong-Vietnam 

Solution by Soumava Chakraborty-Kolkata-India 

𝐋𝐇𝐒 =
𝟑∑ ((𝟏 + 𝐛)(𝟏 + 𝐜))𝐜𝐲𝐜 − 𝟒

(𝟏 + 𝒂)(𝟏 + 𝐛)(𝟏 + 𝐜)
=
𝟑(𝟑 + 𝟐∑ 𝒂𝐜𝐲𝐜 + ∑ 𝒂𝐛𝐜𝐲𝐜 ) − 𝟒

𝟏 + 𝒂𝐛𝐜 + ∑ 𝒂𝐜𝐲𝐜 +∑ 𝒂𝐛𝐜𝐲𝐜
 



 
www.ssmrmh.ro 

4 RMM-CYCLIC INEQUALITIES MARATHON 2001-2100 

 

=
∑ 𝒂𝐜𝐲𝐜  = ∑ 𝒂𝐛𝐜𝐲𝐜 𝟓 + 𝟗∑ 𝒂𝐜𝐲𝐜

𝟏 + 𝒂𝐛𝐜 + 𝟐∑ 𝒂𝐜𝐲𝐜
≥
?
𝟒 ⇔ 𝟏 +∑𝒂

𝐜𝐲𝐜

≥
?
𝟒𝒂𝐛𝐜 

⇔
∑ 𝒂𝐜𝐲𝐜  = ∑ 𝒂𝐛𝐜𝐲𝐜 ∑ 𝒂𝐛𝐜𝐲𝐜

∑ 𝒂𝐜𝐲𝐜
+∑𝒂

𝐜𝐲𝐜

≥
?
𝟒𝒂𝐛𝐜(

∑ 𝒂𝐜𝐲𝐜

∑ 𝒂𝐛𝐜𝐲𝐜
)

𝟐

 

⇔ (∑𝒂𝐛

𝐜𝐲𝐜

)

𝟑

+(∑𝒂

𝐜𝐲𝐜

)

𝟐

(∑𝒂𝐛

𝐜𝐲𝐜

)

𝟐

≥
?
𝟒𝒂𝐛𝐜(∑𝒂

𝐜𝐲𝐜

)

𝟑

 

⇔∑𝒂𝟒𝐛𝟐

𝐜𝐲𝐜

+∑𝒂𝟐𝐛𝟒

𝐜𝐲𝐜

+ 𝟑∑𝒂𝟑𝐛𝟑

𝐜𝐲𝐜

≥
?
𝟐𝒂𝐛𝐜∑𝒂𝟑

𝐜𝐲𝐜

+ 𝒂𝐛𝐜(∑𝒂𝟐𝐛

𝐜𝐲𝐜

+∑𝒂𝐛𝟐

𝐜𝐲𝐜

) + 

𝟑𝒂𝟐𝐛𝟐𝐜𝟐 → 𝐭𝐫𝐮𝐞 ∵ ∑𝒂𝟒𝐛𝟐

𝐜𝐲𝐜

+∑𝒂𝟒𝐜𝟐

𝐜𝐲𝐜

≥
𝐀𝐌−𝐆𝐌

𝟐𝒂𝐛𝐜∑𝒂𝟑

𝐜𝐲𝐜

 𝒂𝐧𝐝 𝟐∑𝒂𝟑𝐛𝟑

𝐜𝐲𝐜

 

≥
𝐒𝐜𝐡𝐮𝐫 + 𝐀𝐌−𝐆𝐌

𝒂𝐛𝐜(∑𝒂𝟐𝐛

𝐜𝐲𝐜

+∑𝒂𝐛𝟐

𝐜𝐲𝐜

)  𝒂𝐧𝐝 ∑𝒂𝟑𝐛𝟑

𝐜𝐲𝐜

≥
𝐀𝐌−𝐆𝐌

𝟑𝒂𝟐𝐛𝟐𝐜𝟐 

∴
𝟑

𝟏 + 𝒂
+

𝟑

𝟏 + 𝐛
+

𝟑

𝟏 + 𝐜
−

𝟒

(𝟏 + 𝒂)(𝟏 + 𝐛)(𝟏 + 𝐜)
≥ 𝟒 ∀ 𝒂 + 𝐛 + 𝐜 = 𝒂𝐛 + 𝐛𝐜 + 𝒄𝒂, 

 

′′ =′′  𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 = 𝟏 (𝐐𝐄𝐃) 

2003. 𝐅𝐨𝐫 𝒂, 𝐛, 𝐜 > 0 𝑝𝑟𝑜𝑣𝑒 𝑡ℎ𝑎𝐭 ∶ 

𝒂𝟑

𝐛𝟑
+
𝐛𝟑

𝐜𝟑
+
𝐜𝟑

𝒂𝟑
≥
𝟓𝟔

𝟏𝟓
(𝒂 + 𝐛 + 𝐜) (

𝟏

𝒂
+
𝟏

𝐛
+
𝟏

𝐜
) −

𝟏𝟓𝟑

𝟓
 

  Proposed by Dang Ngoc Minh-Vietnam 

Solution by Soumava Chakraborty-Kolkata-India 

𝐋𝐞𝐭 𝒙 =
𝒂

𝐛
, 𝐲 =

𝐛

𝐜
, 𝐳 =

𝐜

𝒂
 𝒂𝐧𝐝 𝐭𝐡𝐞𝐧 ∶ ∑

𝒂𝟑

𝐛𝟑
𝐜𝐲𝐜

+
𝟏𝟓𝟑

𝟓
≥
? 𝟓𝟔

𝟏𝟓
(∑𝒂

𝐜𝐲𝐜

)(∑
𝟏

𝒂
𝐜𝐲𝐜

) 

⇔∑𝒙𝟑

𝐜𝐲𝐜

+
𝟏𝟓𝟑

𝟓
≥
? 𝟓𝟔

𝟏𝟓
(𝟑 +∑𝒙

𝐜𝐲𝐜

+∑
𝟏

𝒙
𝐜𝐲𝐜

)∑𝒙𝟑

𝐜𝐲𝐜

+
𝟗𝟕

𝟓
≥
? 𝟓𝟔

𝟏𝟓
(∑𝒙

𝐜𝐲𝐜

+∑𝒙𝐲

𝐜𝐲𝐜

)  

(∵ 𝒙𝐲𝐳 = 𝟏) 𝒂𝐧𝐝 ∵ ∑𝒙𝐲

𝐜𝐲𝐜

≤
𝟏

𝟑
(∑𝒙

𝐜𝐲𝐜

)

𝟐

∴ 𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 
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∑𝒙𝟑

𝐜𝐲𝐜

+
𝟗𝟕

𝟓
≥
?
⏟
(∗)

𝟓𝟔

𝟏𝟓
(∑𝒙

𝐜𝐲𝐜

+
𝟏

𝟑
(∑𝒙

𝐜𝐲𝐜

)

𝟐

)  𝒂𝐧𝐝 𝒂𝐬 𝒂 𝐩𝐫𝐞𝒍𝐢𝐦𝐢𝐧𝒂𝐫𝐲 𝐭𝐫𝐢𝐯𝐢𝒂𝒍 

𝐨𝐛𝐬𝐞𝐫𝐯𝒂𝐭𝐢𝐨𝐧,𝐰𝐞 𝐧𝐨𝐭𝐞 𝐭𝐡𝒂𝐭 ∶ 𝐰𝐡𝐞𝐧 𝒙 = 𝐲 = 𝐳 = 𝟏, (∗) 𝐛𝐞𝐜𝐨𝐦𝐞𝐬 𝒂𝐧 𝐞𝐪𝐮𝒂𝒍𝐢𝐭𝐲  
𝒂𝐧𝐝 𝐧𝐨𝐰,𝐰𝐞 𝐬𝐩𝒍𝐢𝐭 𝐨𝐮𝐫 𝐬𝐮𝐛𝐬𝐞𝐪𝐮𝐞𝐧𝐭 𝒂𝐧𝒂𝒍𝐲𝐬𝐢𝐬 𝐢𝐧𝐭𝐨 𝟐 𝐜𝒂𝐬𝐞𝐬 ∶ 

𝐂𝒂𝐬𝐞 𝟏  ∑𝒙

𝐜𝐲𝐜

≥ 𝟏𝟑 𝒂𝐧𝐝 𝐭𝐡𝐞𝐧 ∶ 𝐋𝐇𝐒 𝐨𝐟 (∗) ≥
𝐇𝐨𝒍𝐝𝐞𝐫 𝐭𝟑

𝟗
+
𝟗𝟕

𝟓
≥
? 𝟓𝟔

𝟏𝟓
(𝐭 +

𝐭𝟐

𝟑
) (𝐭 = ∑𝒙

𝐜𝐲𝐜

) 

⇔ 𝟓𝐭𝟑 − 𝟓𝟔𝐭𝟐 − 𝟏𝟔𝟖𝐭 + 𝟖𝟕𝟑 ≥
?
𝟎 ⇔ (𝐭 − 𝟑)((𝐭 − 𝟏𝟑)(𝟓𝐭 + 𝟐𝟒) + 𝟐𝟏) ≥

?
𝟎 

→ 𝐭𝐫𝐮𝐞 ∵ 𝐭 ≥ 𝟏𝟑 ⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 

𝐂𝒂𝐬𝐞 𝟐  ∑𝒙

𝐜𝐲𝐜

< 13; 𝐭𝐡𝐞𝐧 ∶ 𝐑𝐇𝐒 𝐨𝐟 (∗) <
𝟓𝟔

𝟏𝟓
(∑𝒙

𝐜𝐲𝐜

+
𝟏𝟑

𝟑
(∑𝒙

𝐜𝐲𝐜

)) =
𝟖𝟗𝟔

𝟒𝟓
(∑𝒙

𝐜𝐲𝐜

) 

=
𝒙𝐲𝐳 = 𝟏 𝟖𝟗𝟔

𝟒𝟓
(∑𝒙

𝐜𝐲𝐜

) . √𝒙𝟐𝐲𝟐𝐳𝟐
𝟑

<
?
∑𝒙𝟑

𝐜𝐲𝐜

+
𝟗𝟕

𝟓
=

𝒙𝐲𝐳 = 𝟏 𝟒𝟓∑ 𝒙𝟑𝐜𝐲𝐜 + 𝟖𝟕𝟑𝒙𝐲𝐳

𝟒𝟓
 

⇔ (𝟒𝟓∑𝒙𝟑

𝐜𝐲𝐜

+ 𝟖𝟕𝟑𝒙𝐲𝐳)

𝟑

>
?
⏟
(∗∗)

𝟖𝟎𝟐𝟖𝟏𝟔𝒙𝟐𝐲𝟐𝐳𝟐(∑𝒙

𝐜𝐲𝐜

)

𝟑

 

𝐀𝐬𝐬𝐢𝐠𝐧𝐢𝐧𝐠 𝐲 + 𝐳 = 𝐗, 𝐳 + 𝒙 = 𝐘, 𝒙 + 𝐲 = 𝐙 ⇒ 𝐗 + 𝐘 − 𝐙 = 𝟐𝐳 > 0, 𝑌 + 𝑍 − 𝑋 = 2𝒙 
> 𝟎 𝒂𝐧𝐝 𝐙 + 𝐗 − 𝐘 = 𝟐𝐲 > 0 ⇒ 𝑋 + 𝐘 > 𝑍, 𝐘 + 𝐙 > 𝑋, 𝑍 + 𝑋 > 𝑌 ⇒ 𝑋, 𝑌, 𝑍 𝑓𝑜𝑟𝑚  

𝐬𝐢𝐝𝐞𝐬 𝐨𝐟 𝒂 𝐭𝐫𝐢𝒂𝐧𝐠𝐥𝐞 𝐰𝐢𝐭𝐡 𝐬𝐞𝐦𝐢𝐩𝐞𝐫𝐢𝐦𝐞𝐭𝐞𝐫, 𝐜𝐢𝐫𝐜𝐮𝐦𝐫𝒂𝐝𝐢𝐮𝐬 𝒂𝐧𝐝 𝐢𝐧𝐫𝒂𝐝𝐢𝐮𝐬
= 𝐬, 𝐑, 𝐫 (𝐬𝒂𝐲)  

𝒂𝐧𝐝 𝐭𝐡𝐞𝐧 ∶ ∑𝒙

𝐜𝐲𝐜

= 𝐬, 𝒙𝐲𝐳 = 𝐫𝟐𝐬,∑𝒙𝟑

𝐜𝐲𝐜

= 𝐬𝟑 − 𝟏𝟐𝐑𝐫𝐬 𝒂𝐧𝐝 𝐬𝐨, (∗∗) ⇔ 

(𝟒𝟓(𝐬𝟑 − 𝟏𝟐𝐑𝐫𝐬) + 𝟖𝟕𝟑𝐫𝟐𝐬)𝟑 − 𝟖𝟎𝟐𝟖𝟏𝟔𝐫𝟒𝐬𝟐(𝐬)𝟑 >
?
𝟎 𝒂𝐧𝐝 ∵ 𝐏 = 

𝟗𝟏𝟏𝟐𝟓𝐬𝟑(𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐)𝟑 + 𝟒𝐫𝐬𝟑(𝟐𝟕𝟑𝟑𝟕𝟓𝐑 + 𝟗𝟖𝟒𝟏𝟓𝟎𝐫)(𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐)𝟐 + 

𝟏𝟔𝐫𝟐𝐬𝟑(𝟐𝟕𝟑𝟑𝟕𝟓𝐑𝟐 + 𝟏𝟗𝟔𝟖𝟑𝟎𝟎𝐑𝐫 + 𝟑𝟒𝟗𝟐𝟕𝟔𝟒𝐫𝟐)(𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐) ≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

𝟎 

∴ 𝐢𝐧 𝐨𝐫𝐝𝐞𝐫 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 (∗∗), 𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 𝐋𝐇𝐒 𝐨𝐟 (∗∗) >
?
𝐏 

⇔ 𝟔𝟒𝐫𝟑𝐬𝟑(𝟗𝟏𝟏𝟐𝟓𝐑𝟑 + 𝟗𝟖𝟒𝟏𝟓𝟎𝐑𝟐𝐫 + 𝟑𝟑𝟒𝟐𝟐𝟑𝟔𝐑𝐫𝟐 + 𝟒𝟑𝟏𝟒𝟐𝟒𝟖𝐫𝟑) >
?
𝟎 → 𝐭𝐫𝐮𝐞 

⇒ (∗∗) ⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 ∴
𝒂𝟑

𝐛𝟑
+
𝐛𝟑

𝐜𝟑
+
𝐜𝟑

𝒂𝟑
≥
𝟓𝟔

𝟏𝟓
(𝒂 + 𝐛 + 𝐜) (

𝟏

𝒂
+
𝟏

𝐛
+
𝟏

𝐜
) −

𝟏𝟓𝟑

𝟓
 

∀ 𝒂, 𝐛, 𝐜 > 0, ′′ =′′ 𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 (𝐐𝐄𝐃) 
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2004. 𝐈𝐟 𝒂, 𝐛, 𝐜 > 𝟎 𝒂𝐧𝐝 𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐 ≤ 𝟑 𝐭𝐡𝐞𝐧 𝐩𝐫𝐨𝐯𝐞 𝐭𝐡𝒂𝐭 ∶ 

(𝐛𝟐 + 𝐜𝟐)𝒂. (𝐜𝟐 + 𝒂𝟐)𝐛. (𝒂𝟐 + 𝐛𝟐)𝐜 ≤ 𝟖 

  Proposed by Nguyen Hung Cuong-Vietnam 

Solution by Soumava Chakraborty-Kolkata-India 

𝐕𝐢𝒂 𝐖𝐞𝐢𝐠𝐡𝐭𝐞𝐝 𝐀𝐌 −𝐖𝐞𝐢𝐠𝐡𝐭𝐞𝐝 𝐆𝐌 𝐢𝐧𝐞𝐪𝐮𝒂𝒍𝐢𝐭𝐲, 

√(𝐛𝟐 + 𝐜𝟐)𝒂. (𝐜𝟐 + 𝒂𝟐)𝐛. (𝒂𝟐 + 𝐛𝟐)𝐜
𝒂+𝐛+𝐜

≤
∑ (𝒂(𝐛𝟐 + 𝐜𝟐))𝐜𝐲𝐜

∑ 𝒂𝐜𝐲𝐜
≤
?
𝟐 

⇔
𝟐

𝟑
. 𝟑 (∑𝒂

𝐜𝐲𝐜

) ≥
?
(∑𝒂

𝐜𝐲𝐜

)(∑𝒂𝐛

𝐜𝐲𝐜

) − 𝟑𝒂𝐛𝐜 𝒂𝐧𝐝 ∵ 𝟑 ≥∑𝒂𝟐

𝐜𝐲𝐜

 

∴ 𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 𝟐(∑𝒂

𝐜𝐲𝐜

)(∑𝒂𝟐

𝐜𝐲𝐜

) ≥
?
𝟑(∑𝒂

𝐜𝐲𝐜

)(∑𝒂𝐛

𝐜𝐲𝐜

) − 𝟗𝒂𝐛𝐜 

⇔ 𝟐∑𝒂𝟑

𝐜𝐲𝐜

≥
?
∑𝒂𝟐𝐛

𝐜𝐲𝐜

+∑𝒂𝐛𝟐

𝐜𝐲𝐜

→ 𝐭𝐫𝐮𝐞 𝐯𝐢𝒂 𝐒𝐜𝐡𝐮𝐫 + 𝐀𝐌− 𝐆𝐌 

∴ √(𝐛𝟐 + 𝐜𝟐)𝒂. (𝐜𝟐 + 𝒂𝟐)𝐛. (𝒂𝟐 + 𝐛𝟐)𝐜
𝒂+𝐛+𝐜

≤ 𝟐 ⇒ (𝐛𝟐 + 𝐜𝟐)𝒂. (𝐜𝟐 + 𝒂𝟐)𝐛. (𝒂𝟐 + 𝐛𝟐)𝐜 

≤ 𝟐∑ 𝒂𝐜𝐲𝐜  (∵ ∑𝒂

𝐜𝐲𝐜

> 0) ≤ 𝟐𝟑 = 𝟖 (∵ ∑𝒂

𝐜𝐲𝐜

≤
𝐂𝐁𝐒

√𝟑∑𝒂𝟐

𝐜𝐲𝐜

= 𝟑 𝒂𝐧𝐝 ∵ 𝟐 > 1) 

 

∴∏(𝐛𝟐 + 𝐜𝟐)𝒂

𝐜𝐲𝐜

≤ 𝟖 ∀ 𝒂, 𝐛, 𝐜 > 𝟎│∑𝒂𝟐

𝐜𝐲𝐜

≤ 𝟑, ′′ =′′  𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 = 𝟏 (𝐐𝐄𝐃) 

 

2005. 𝐈𝐟 𝒂, 𝐛, 𝐜 > 0 𝑎𝐧𝐝 𝒂𝐛𝐜 = 𝟏 𝐭𝐡𝐞𝐧 ∶ 

∑
𝒂𝟒. √𝐜 + 𝐛𝟒. √𝐛

√𝐜𝒂 + √𝒂𝐛
𝐜𝐲𝐜

≥ 𝟑 

  Proposed by Zaza Mzhavanadze-Georgia 

Solution by Soumava Chakraborty-Kolkata-India 

𝐕𝐢𝒂 𝐖𝒂𝒍𝐭𝐞𝐫 𝐉𝒂𝐧𝐨𝐮𝐬, ∀ 𝐀’, 𝐁’, 𝐂’, 𝒙′, 𝐲′, 𝐳′ > 𝟎, 

𝒙′

𝐲′ + 𝐳′
(𝐁′ + 𝐂′) +

𝐲′

𝐳′ + 𝒙′
(𝐂′ +𝐀′) +

𝐳′

𝒙′ + 𝐲′
(𝐀′ + 𝐁′) ≥ √𝟑∑𝐀′𝐁′

𝐜𝐲𝐜

 (𝐯𝐢𝒂 ) →① 
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𝐍𝐨𝐰,∑
𝒂𝟒. √𝐜 + 𝐛𝟒. √𝐛

√𝐜𝒂 + √𝒂𝐛
𝐜𝐲𝐜

=∑

𝟏

√𝒂
. (
𝒂𝟒

√𝐛
+
𝐛𝟒

√𝐜
)

𝟏

√𝐛
+
𝟏

√𝐜
𝐜𝐲𝐜

 

=
𝒙′

𝐲′ + 𝐳′
(𝐁′ + 𝐂′) +

𝐲′

𝐳′ + 𝒙′
(𝐂′ + 𝐀′) +

𝐳′

𝒙′ + 𝐲′
(𝐀′ + 𝐁′) 

(𝒙′ =
𝟏

√𝒂
, 𝐲′ =

𝟏

√𝐛
, 𝐳′ =

𝟏

√𝐜
,𝐀′ =

𝐜𝟒

√𝒂
,𝐁′ =

𝒂𝟒

√𝐛
, 𝐂′ =

𝐛𝟒

√𝐜
) ≥
𝐯𝐢𝒂 ①

√𝟑∑(
𝐜𝟒

√𝒂
.
𝒂𝟒

√𝐛
)

𝐜𝐲𝐜

 

≥
𝐀𝐌−𝐆𝐌

𝟑.√√
𝒂𝟖𝐛𝟖𝐜𝟖

𝒂𝐛𝐜

𝟑

=
𝒂𝐛𝐜 = 𝟏

𝟑 ∀ 𝒂, 𝐛, 𝐜 > 0 │𝑎𝐛𝐜 = 𝟏, ′′ =′′  𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 = 𝟏 (𝐐𝐄𝐃) 

2006. If 𝒂, 𝒃 > 0, 𝑎𝑏 = 1 then: 
𝒂

𝒃𝟐 + 𝟏
+

𝒃

𝒂𝟐 + 𝟏
≥ 𝟏 

 
Proposed by Nguyen Hung Cuong-Vietnam 

Solution by Daniel Sitaru-Romania 
 

𝒂

𝒃𝟐 + 𝟏
+

𝒃

𝒂𝟐 + 𝟏
=

𝒂𝟐

𝒂𝒃𝟐 + 𝒂
+

𝒃𝟐

𝒃𝒂𝟐 + 𝒃
≥⏞

𝑩𝑬𝑹𝑮𝑺𝑻𝑹𝑶𝑴

 

 

≥
(𝒂 + 𝒃)𝟐

𝒂𝒃𝟐 + 𝒂 + 𝒃𝒂𝟐 + 𝒃
=

(𝒂 + 𝒃)𝟐

𝒃 + 𝒂 + 𝒂 + 𝒃
=
𝒂 + 𝒃

𝟐
≥⏞

𝑨𝑴−𝑮𝑴

√𝒂𝒃 = 𝟏 

 
Equality holds for 𝒂 = 𝒃 = 𝟏. 

 

2007. If 𝒂, 𝒃 > 0, 𝒂𝟓 + 𝒃𝟓 ≤ 𝟐𝒂𝟑𝒃𝟑 then: 
 

𝒂𝟐 + 𝒃𝟐 ≥ 𝟐 
 

Proposed by Nguyen Hung Cuong-Vietnam 
Solution by Tapas Das-India 

𝒂𝟓 + 𝒃𝟓 ≤ 𝟐𝒂𝟑𝒃𝟑 𝒐𝒓  𝟐√𝒂𝟓𝒃𝟓 ≤
𝑨𝑴−𝑮𝑴

  𝟐𝒂𝟑𝒃𝟑 𝒐𝒓 √𝒂𝒃 ≥ 𝟏 𝒐𝒓 𝒂𝒃 ≥ 𝟏 (𝟏) 
 

𝒂𝟐 + 𝒃𝟐 ≥
𝑨𝑴−𝑮𝑴

 𝟐𝒂𝒃 ≥
(𝟏)

𝟐 
 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒇𝒐𝒓 𝒂 = 𝒃 = 𝟏. 



 
www.ssmrmh.ro 

8 RMM-CYCLIC INEQUALITIES MARATHON 2001-2100 

 

2008. If 𝒂, 𝒃, 𝒄 > 0 then: 
 

√𝒂𝟐 + 𝒃𝟐

𝒄
+
√𝒃𝟐 + 𝒄𝟐

𝒂
+
√𝒄𝟐 + 𝒂𝟐

𝒃
≥ 𝟑√𝟐 

 
Proposed by Nguyen Hung Cuong-Vietnam 

Solution by Tapas Das-India 
 

√𝒂𝟐 + 𝒃𝟐

𝒄
+
√𝒃𝟐 + 𝒄𝟐

𝒂
+
√𝒄𝟐 + 𝒂𝟐

𝒃
=∑

√𝒂𝟐 + 𝒃𝟐

𝒄
= ∑√

𝒂𝟐

𝒄𝟐
+
𝒃𝟐

𝒄𝟐
≥
𝑪𝑩𝑺

 

∑√
𝟏

𝟐
(
𝒂

𝒄
+
𝒃

𝒄
)
𝟐

=
𝟏

√𝟐
∑(

𝒂

𝒄
+
𝒃

𝒄
) =

𝟏

√𝟐
∑(

𝒂

𝒄
+
𝒄

𝒂
) ≥
𝑨𝑴−𝑮𝑴 𝟏

√𝟐
∑𝟐 =

𝟔

√𝟐
= 𝟑√𝟐 

 
Equality  holds  for  a=b=c. 

 
2009. 𝐈𝐟 𝒂, 𝐛, 𝐜 > 𝟎 𝒂𝐧𝐝 𝒂 + 𝐛 + 𝐜 ≤ 𝟑 𝐭𝐡𝐞𝐧 𝐩𝐫𝐨𝐯𝐞 𝐭𝐡𝒂𝐭 ∶ 

(
𝐛 + 𝐜

𝒂
)

𝟏
𝒂
. (
𝐜 + 𝒂

𝐛
)

𝟏
𝐛
. (
𝒂 + 𝐛

𝐜
)

𝟏
𝐜
≥ 𝟖 

  Proposed by Nguyen Hung Cuong-Vietnam 

Solution by Soumava Chakraborty-Kolkata-India 

𝐕𝐢𝒂 𝐖𝐞𝐢𝐠𝐡𝐭𝐞𝐝 𝐆𝐌 −𝐖𝐞𝐢𝐠𝐡𝐭𝐞𝐝 𝐇𝐌 𝐢𝐧𝐞𝐪𝐮𝒂𝒍𝐢𝐭𝐲, 
 

√(
𝐛 + 𝐜

𝒂
)

𝟏
𝒂

. (
𝐜 + 𝒂

𝐛
)

𝟏
𝐛
. (
𝒂 + 𝐛

𝐜
)

𝟏
𝐜

𝟏
𝒂
+
𝟏
𝐛
+
𝟏
𝐜

≥

𝟏
𝒂 +

𝟏
𝐛 +

𝟏
𝐜

∑
𝟏

𝐛 + 𝐜𝐜𝐲𝐜

≥
𝐑𝐞𝐯𝐞𝐫𝐬𝐞 𝐁𝐞𝐫𝐠𝐬𝐭𝐫𝐨𝐦 ∑

𝟏
𝒂𝐜𝐲𝐜

𝟏
𝟒 .
∑ (

𝟏
𝐛 +

𝟏
𝐜)𝐜𝐲𝐜

 

= 𝟐 ⇒ (
𝐛 + 𝐜

𝒂
)

𝟏
𝒂

. (
𝐜 + 𝒂

𝐛
)

𝟏
𝐛
. (
𝒂 + 𝐛

𝐜
)

𝟏
𝐜

≥ 𝟐
𝟏
𝒂
+
𝟏
𝐛
+
𝟏
𝐜  (∵∑

𝟏

𝒂
𝐜𝐲𝐜

> 0) ≥ 𝟐𝟑 = 𝟖 

(∵ 𝟑∑
𝟏

𝒂
𝐜𝐲𝐜

≥ (∑𝒂

𝐜𝐲𝐜

)(∑
𝟏

𝒂
𝐜𝐲𝐜

) ≥
𝐀𝐌−𝐇𝐌

𝟗 ⇒∑
𝟏

𝒂
𝐜𝐲𝐜

≥ 𝟑 𝒂𝐧𝐝 ∵ 𝟐 > 1) 

∴ (
𝐛 + 𝐜

𝒂
)

𝟏
𝒂

. (
𝐜 + 𝒂

𝐛
)

𝟏
𝐛
. (
𝒂 + 𝐛

𝐜
)

𝟏
𝐜

≥ 𝟖∀ 𝒂, 𝐛, 𝐜 > 𝟎│𝒂 + 𝐛 + 𝐜 ≤ 𝟑, 

′′ =′′  𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 = 𝟏 (𝐐𝐄𝐃) 
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2010. 𝐅𝐨𝐫 𝒂, 𝐛, 𝐜 ≥ 𝟎, 𝒂𝐛 + 𝐛𝐜 + 𝐜𝒂 > 0 𝐩𝐫𝐨𝐯𝐞 𝐭𝐡𝒂𝐭 ∶ 

𝟏

𝒂 + 𝐛
+

𝟏

𝐛 + 𝐜
+

𝟏

𝐜 + 𝒂
≥

𝟏𝟓√𝟑

√𝟖(𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐) + 𝟗𝟐(𝒂𝐛 + 𝐛𝐜 + 𝐜𝒂)
 

  Proposed by Dang Ngoc Minh-Vietnam 

Solution by Soumava Chakraborty-Kolkata-India 

𝐒𝐢𝐧𝐜𝐞 𝒂, 𝐛, 𝐜 ≥ 𝟎 ∧  𝒂𝐛 + 𝐛𝐜 + 𝐜𝒂 > 0, 𝐡𝐞𝐧𝐜𝐞 𝐨𝐧𝒍𝐲 𝟐 𝐜𝒂𝐬𝐞𝐬 𝒂𝐫𝐞 𝐩𝐨𝐬𝐬𝐢𝐛𝒍𝐞. 

𝐂𝒂𝐬𝐞 𝟏  𝐄𝒙𝒂𝐜𝐭𝒍𝐲 𝟏 𝐯𝒂𝐫𝐢𝒂𝐛𝒍𝐞 𝐞𝐪𝐮𝒂𝒍𝐬 𝐳𝐞𝐫𝐨 𝒂𝐧𝐝 𝐖𝐋𝐎𝐆 𝐰𝐞 𝐦𝒂𝐲 𝒂𝐬𝐬𝐮𝐦𝐞 𝒂 = 𝟎  
(𝐛, 𝐜 > 𝟎) 𝒂𝐧𝐝 𝐭𝐡𝐞𝐧,𝐦𝒂𝐢𝐧 𝐢𝐧𝐞𝐪𝐮𝒂𝒍𝐢𝐭𝐲 𝐛𝐞𝐜𝐨𝐦𝐞𝐬 ∶ 

𝟏

𝐛
+

𝟏

𝐛 + 𝐜
+
𝟏

𝐜
≥
? 𝟏𝟓√𝟑

√𝟖(𝐛𝟐 + 𝐜𝟐) + 𝟗𝟐𝐛𝐜
 

⇔ (𝟖(𝐛𝟐 + 𝐜𝟐) + 𝟗𝟐𝐛𝐜)(𝐛𝐜 + (𝐛 + 𝐜)𝟐)𝟐 − 𝟔𝟕𝟓𝐛𝟐𝐜𝟐(𝐛 + 𝐜)𝟐 ≥
?
𝟎 

⇔ 𝟖𝐛𝟔 + 𝟏𝟒𝟎𝐛𝟓𝐜 − 𝟐𝟕𝐛𝟒𝐜𝟐 − 𝟐𝟒𝟐𝐛𝟑𝐜𝟑 − 𝟐𝟕𝐛𝟐𝐜𝟒 + 𝟏𝟒𝟎𝐛𝐜𝟓 + 𝟖𝐜𝟔 ≥
?
𝟎 

⇔ (𝐛 − 𝐜)𝟐(𝟖𝐛𝟒 + 𝟏𝟓𝟔𝐛𝟑𝐜 + 𝟐𝟕𝟕𝐛𝟐𝐜𝟐 + 𝟏𝟓𝟔𝐛𝐜𝟑 + 𝟖𝐜𝟒) ≥
?
𝟎 → 𝐭𝐫𝐮𝐞 ∵ 𝐛, 𝐜 > 𝟎 

∴
𝟏

𝒂 + 𝐛
+

𝟏

𝐛 + 𝐜
+

𝟏

𝐜 + 𝒂
≥

𝟏𝟓√𝟑

√𝟖(𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐) + 𝟗𝟐(𝒂𝐛 + 𝐛𝐜 + 𝐜𝒂)
 

𝐂𝒂𝐬𝐞 𝟐  𝒂, 𝐛, 𝐜 > 𝟎 𝒂𝐧𝐝 𝒂𝐬𝐬𝐢𝐠𝐧𝐢𝐧𝐠 𝐛 + 𝐜 = 𝒙, 𝐜 + 𝒂 = 𝐲, 𝒂 + 𝐛 = 𝐳 ⇒ 𝒙 + 𝐲 − 𝐳 = 𝟐𝐜 
> 𝟎, 𝒚 + 𝒛 − 𝒙 = 𝟐𝒂 > 𝟎 𝒂𝐧𝐝 𝐳 + 𝒙 − 𝐲 = 𝟐𝐛 > 0 ⇒ 𝑥 + 𝐲 > 𝑧, 𝐲 + 𝐳 > 𝒙, 𝐳 + 𝒙 > 𝒚 

⇒ 𝒙, 𝐲, 𝐳 𝐟𝐨𝐫𝐦 𝐬𝐢𝐝𝐞𝐬 𝐨𝐟 𝒂 𝐭𝐫𝐢𝒂𝐧𝐠𝐥𝐞 𝐗𝐘𝐙 𝐰𝐢𝐭𝐡 𝐬𝐞𝐦𝐢𝐩𝐞𝐫𝐢𝐦𝐞𝐭𝐞𝐫, 𝐜𝐢𝐫𝐜𝐮𝐦𝐫𝒂𝐝𝐢𝐮𝐬 𝒂𝐧𝐝 𝐢𝐧𝐫𝒂𝐝𝐢𝐮𝐬 

= 𝐬,𝐑, 𝐫 (𝐬𝒂𝐲); 𝐭𝐡𝐞𝐧 ∶ ∑𝒂𝐛

𝐜𝐲𝐜

= 𝟒𝐑𝐫 + 𝐫𝟐,∑𝒂𝟐

𝐜𝐲𝐜

= 𝐬𝟐 − 𝟖𝐑𝐫 − 𝟐𝐫𝟐 𝒂𝐧𝐝 𝐭𝐡𝐞𝐧, 

𝐦𝒂𝐢𝐧 𝐢𝐧𝐞𝐪𝐮𝒂𝒍𝐢𝐭𝐲 𝐛𝐞𝐜𝐨𝐦𝐞𝐬 ∶ (
∑ 𝒙𝐲𝐜𝐲𝐜

𝒙𝐲𝐳
)

𝟐

=
(𝐬𝟐 + 𝟒𝐑𝐫 + 𝐫𝟐)𝟐

𝟏𝟔𝐑𝟐𝐫𝟐𝐬𝟐
≥
?

 

𝟔𝟕𝟓

𝟖(𝐬𝟐 − 𝟖𝐑𝐫 − 𝟐𝐫𝟐) + 𝟗𝟐(𝟒𝐑𝐫 + 𝐫𝟐)
⇔ 𝟐𝐬𝟔 + (𝟗𝟐𝐑𝐫 + 𝟐𝟑𝐫𝟐)𝐬𝟒 − 

𝐫𝟐(𝟐𝟎𝟔𝟎𝐑𝟐 − 𝟑𝟐𝟎𝐑𝐫 − 𝟒𝟎𝐫𝟐)𝐬𝟐 + 𝐫𝟑(𝟏𝟐𝟏𝟔𝐑𝟑 + 𝟗𝟏𝟐𝐑𝟐𝐫 + 𝟐𝟐𝟖𝐑𝐫𝟐 + 𝟏𝟗𝐫𝟑) ≥
?
⏟
(∗)

𝟎  

𝒂𝐧𝐝 ∵ 𝐏 = 𝟐(𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐)𝟑 + 𝐫(𝟏𝟖𝟖𝐑 − 𝟕𝐫)(𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐)𝟐 + 

𝟒𝐫𝟐(𝟔𝟎𝟓𝐑𝟐 − 𝟐𝟎𝟔𝐑𝐫 − 𝟏𝟎𝐫𝟐) (𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐 −
𝐫𝟐(𝐑 − 𝟐𝐫)

𝐑 − 𝐫
) ≥

𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧
𝒂𝐧𝐝

𝐑𝐨𝐮𝐜𝐡𝐞 + 𝐄𝐮𝐥𝐞𝐫

𝟎 

(
∵ (𝐑 − 𝐫)(𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐) ≥

𝐑𝐨𝐮𝐜𝐡𝐞
(𝐑 − 𝐫) (𝟐𝐑𝟐 − 𝟔𝐑𝐫 + 𝟒𝐫𝟐 − 𝟐(𝐑 − 𝟐𝐫)√𝐑𝟐 − 𝟐𝐑𝐫)

= (𝐑 − 𝟐𝐫) ((𝐑− 𝐫 − √𝐑𝟐 − 𝟐𝐑𝐫)
𝟐

+ 𝐫𝟐) ≥
𝐄𝐮𝐥𝐞𝐫

𝐫𝟐(𝐑 − 𝟐𝐫) ⇒ 𝐬𝟐 ≥ 𝟏𝟔𝐑𝐫 − 𝟓𝐫𝟐 +
𝐫𝟐(𝐑 − 𝟐𝐫)

𝐑 − 𝐫

) 
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∴ 𝐢𝐧 𝐨𝐫𝐝𝐞𝐫 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 (∗), 𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 𝐋𝐇𝐒 𝐨𝐟 (∗) ≥
?
𝐏 

⇔ 𝟓𝟔𝟎𝐭𝟑 − 𝟏𝟐𝟗𝟗𝐭𝟐 + 𝟑𝟔𝟔𝐭 − 𝟏𝟔 ≥
?
𝟎 (𝐭 =

𝐑

𝐫
) ⇔ (𝐭 − 𝟐)(𝟓𝟔𝟎𝐭𝟐 − 𝟏𝟕𝟗𝐭 + 𝟖) ≥

?
𝟎 

→ 𝐭𝐫𝐮𝐞 ∵ 𝐭 ≥
𝐄𝐮𝐥𝐞𝐫

𝟐 ⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 ∴
𝟏

𝒂 + 𝐛
+

𝟏

𝐛 + 𝐜
+

𝟏

𝐜 + 𝒂
≥ 

𝟏𝟓√𝟑

√𝟖(𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐) + 𝟗𝟐(𝒂𝐛 + 𝐛𝐜 + 𝐜𝒂)
𝒂𝐧𝐝 𝐬𝐨,

𝟏

𝒂 + 𝐛
+

𝟏

𝐛 + 𝐜
+

𝟏

𝐜 + 𝒂
≥ 

𝟏𝟓√𝟑

√𝟖(𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐) + 𝟗𝟐(𝒂𝐛 + 𝐛𝐜 + 𝐜𝒂)
 ∀ 𝒂, 𝐛, 𝐜 ≥ 𝟎│𝒂𝐛 + 𝐛𝐜 + 𝐜𝒂 > 0, 

′′ =′′  𝐢𝐟𝐟 (
𝒂 = 𝟎

𝐛 = 𝐜 > 0
)  𝐨𝐫 (

𝐛 = 𝟎
𝐜 = 𝒂 > 𝟎

)  𝐨𝐫 (
𝐜 = 𝟎

𝒂 = 𝐛 > 0
)  𝐨𝐫 (𝒂 = 𝐛 = 𝐜 > 0) (𝐐𝐄𝐃) 

 

2011. 𝐈𝐟 𝒙, 𝐲, 𝐳 > 𝟎, 𝒙𝐲 + 𝐲𝐳 + 𝐳𝒙 + 𝒙𝐲𝐳 = 𝟒 𝒂𝐧𝐝 𝛌 ≥ 𝟏 𝐭𝐡𝐞𝐧 ∶ 

𝛌∑
𝟏

𝒙𝟐
𝐜𝐲𝐜

+∑
𝟏

𝒙
𝐜𝐲𝐜

≥ (𝛌 + 𝟏)∑
𝟏

𝒙𝐲
𝐜𝐲𝐜

 

  Proposed by Marin Chirciu-Romania 

Solution by Soumava Chakraborty-Kolkata-India 

∑((𝟐 + 𝐲)(𝟐 + 𝐳))

𝐜𝐲𝐜

− (𝟐 + 𝒙)(𝟐 + 𝐲)(𝟐 + 𝐳) = 𝟒 − (𝒙𝐲 + 𝐲𝐳 + 𝐳𝒙 + 𝒙𝐲𝐳) 

= 𝟎 ∴∑
𝟏

𝟐 + 𝒙
𝐜𝐲𝐜

= 𝟏 → (𝐦) 𝒂𝐧𝐝 ∵
𝟏

𝟐 + 𝒙
<
𝒙 > 0 𝟏

𝟐
∴ 𝐰𝐞 𝐜𝒂𝐧 𝐬𝐞𝐭 ∶

𝟏

𝟐 + 𝒙
=
𝟏

𝟐
− 𝒂 

(𝒂 > 0 𝑎𝐧𝐝 𝒂 <
𝟏

𝟐
) ∴ 𝒙 + 𝟐 =

𝟐

𝟏 − 𝟐𝒂
⇒ 𝒙 =

𝟐𝒂

𝟏
𝟐 − 𝒂

→ (𝟏) 𝒂𝐧𝐝 𝐬𝐢𝐦𝐢𝒍𝒂𝐫𝐥𝐲,𝐰𝐞 𝐬𝐞𝐭 ∶ 

𝟏

𝟐 + 𝐲
=
𝟏

𝟐
− 𝐛 𝒂𝐧𝐝 

𝟏

𝟐 + 𝐳
=
𝟏

𝟐
− 𝐜 ∴ 𝟏 =

𝐯𝐢𝒂 (𝐦) 𝟏

𝟐 + 𝒙
+

𝟏

𝟐 + 𝐲
+

𝟏

𝟐 + 𝐳
 

=
𝟏

𝟐
− 𝒂 +

𝟏

𝟐
− 𝐛 +

𝟏

𝟐
− 𝐜 ⇒ 𝒂 + 𝐛 + 𝐜 =

𝟏

𝟐
→ (𝐢) ∴ (𝟏) 𝒂𝐧𝐝 (𝐢) ⇒ 𝒙 =

𝟐𝒂

𝐛 + 𝐜
 𝒂𝐧𝐝  

𝒂𝐧𝒂𝒍𝐨𝐠𝐨𝐮𝐬𝒍𝐲, 𝐲 =
𝟐𝐛

𝐜 + 𝒂
𝒂𝐧𝐝 𝐳 =

𝟐𝐜

𝒂 + 𝐛
 (𝒂, 𝐛, 𝐜 ∈ (𝟎,

𝟏

𝟐
)) 

∴ 𝛌∑
𝟏

𝒙𝟐
𝐜𝐲𝐜

+∑
𝟏

𝒙
𝐜𝐲𝐜

− (𝛌 + 𝟏)∑
𝟏

𝒙𝐲
𝐜𝐲𝐜

= 𝛌(∑
𝟏

𝒙𝟐
𝐜𝐲𝐜

−∑
𝟏

𝒙𝐲
𝐜𝐲𝐜

)

⏞            
≥ 𝟎

+∑
𝟏

𝒙
𝐜𝐲𝐜

−∑
𝟏

𝒙𝐲
𝐜𝐲𝐜

≥
𝛌 ≥ 𝟏

 

∑
𝟏

𝒙𝟐
𝐜𝐲𝐜

−∑
𝟏

𝒙𝐲
𝐜𝐲𝐜

+∑
𝟏

𝒙
𝐜𝐲𝐜

−∑
𝟏

𝒙𝐲
𝐜𝐲𝐜

=∑
(𝐛 + 𝐜)𝟐

𝟒𝒂𝟐
𝐜𝐲𝐜

+∑
𝐛+ 𝐜

𝟐𝒂
𝐜𝐲𝐜

− 𝟐∑
(𝐛 + 𝐜)(𝐜 + 𝒂)

𝟒𝒂𝐛
𝐜𝐲𝐜
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=
𝟏

𝒂𝟐𝐛𝟐𝐜𝟐
. (∑(𝐛𝟐𝐜𝟐(𝐛 + 𝐜)𝟐)

𝐜𝐲𝐜

+ 𝟐∑(𝐛𝐜(𝐛 + 𝐜))

𝐜𝐲𝐜

− 𝟐∑(𝐜(𝐛 + 𝐜)(𝐜 + 𝒂))

𝐜𝐲𝐜

) 

=
𝟏

𝒂𝟐𝐛𝟐𝐜𝟐
. (∑𝒂𝟒𝐛𝟐

𝐜𝐲𝐜

+∑𝒂𝟐𝐛𝟒

𝐜𝐲𝐜

+ 𝟐∑𝒂𝟑𝐛𝟑

𝐜𝐲𝐜

− 𝟐𝒂𝐛𝐜∑𝒂𝟑

𝐜𝐲𝐜

− 𝟔𝒂𝟐𝐛𝟐𝐜𝟐) ≥ 𝟎 

→ 𝐭𝐫𝐮𝐞 ∵∑𝒂𝟒𝐛𝟐

𝐜𝐲𝐜

+∑𝒂𝟒𝐜𝟐

𝐜𝐲𝐜

≥
𝐀𝐌−𝐆𝐌

∑(𝒂𝟒. 𝟐𝐛𝐜)

𝐜𝐲𝐜

= 𝟐𝒂𝐛𝐜∑𝒂𝟑

𝐜𝐲𝐜

 𝒂𝐧𝐝 

𝟐∑𝒂𝟑𝐛𝟑

𝐜𝐲𝐜

≥
𝐀𝐌−𝐆𝐌

𝟔𝒂𝟐𝐛𝟐𝐜𝟐 ∴ 𝛌∑
𝟏

𝒙𝟐
𝐜𝐲𝐜

+∑
𝟏

𝒙
𝐜𝐲𝐜

≥ (𝛌 + 𝟏)∑
𝟏

𝒙𝐲
𝐜𝐲𝐜

  

∀ 𝒙, 𝐲, 𝐳 > 𝟎│𝒙𝐲 + 𝐲𝐳 + 𝐳𝒙 + 𝒙𝐲𝐳 = 𝟒, ′′ =′′  𝐢𝐟𝐟 (𝒙 = 𝐲 = 𝐳 = 𝟏) (𝐐𝐄𝐃) 
 

2012. 𝐈𝐟 𝒙, 𝐲, 𝐳 > 0, 𝑡ℎ𝑒𝑛 𝑝𝑟𝑜𝑣𝑒 𝑡ℎ𝑎𝐭 ∶ 

𝟏

𝒙𝟐 + 𝟐𝐲𝐳
+

𝟏

𝐲𝟐 + 𝟐𝐳𝒙
+

𝟏

𝐳𝟐 + 𝟐𝒙𝐲
≥

𝟐

𝒙𝐲 + 𝐲𝐳 + 𝐳𝒙
+

𝟏

𝒙𝟐 + 𝐲𝟐 + 𝐳𝟐
 

  Proposed by Nguyen Hung Cuong-Vietnam 

Solution by Soumava Chakraborty-Kolkata-India 

𝐀𝐬𝐬𝐢𝐠𝐧𝐢𝐧𝐠 𝐲 + 𝐳 = 𝒂, 𝐳 + 𝒙 = 𝐛, 𝒙 + 𝐲 = 𝐜 ⇒ 𝒂 + 𝐛 − 𝐜 = 𝟐𝐳 > 0, 𝑏 + 𝑐 − 𝑎 
= 𝟐𝒙 > 𝟎 𝒂𝐧𝐝 𝐜 + 𝒂 − 𝐛 = 𝟐𝐲 > 0 ⇒ 𝑎 + 𝐛 > 𝑐, 𝐛 + 𝐜 > 𝒂, 𝐜 + 𝒂 > 𝒃 

⇒ 𝒂, 𝐛, 𝐜 𝐟𝐨𝐫𝐦 𝐬𝐢𝐝𝐞𝐬 𝐨𝐟 𝒂 𝐭𝐫𝐢𝒂𝐧𝐠𝐥𝐞 𝐰𝐢𝐭𝐡 𝐬𝐞𝐦𝐢𝐩𝐞𝐫𝐢𝐦𝐞𝐭𝐞𝐫, 𝐜𝐢𝐫𝐜𝐮𝐦𝐫𝒂𝐝𝐢𝐮𝐬 𝒂𝐧𝐝 𝐢𝐧𝐫𝒂𝐝𝐢𝐮𝐬 

= 𝐬,𝐑, 𝐫 (𝐬𝒂𝐲) ⇒∑𝒙

𝐜𝐲𝐜

= 𝐬, 𝒙𝐲𝐳 = 𝐫𝟐𝐬,∑𝒙𝐲

𝐜𝐲𝐜

= 𝟒𝐑𝐫 + 𝐫𝟐 ,∑𝒙𝟐

𝐜𝐲𝐜

= 𝐬𝟐 − 𝟖𝐑𝐫 − 𝟐𝐫𝟐, 

∑𝒙𝟑

𝐜𝐲𝐜

= 𝐬𝟑 − 𝟏𝟐𝐑𝐫𝐬,∑𝒙𝟐𝐲𝟐

𝐜𝐲𝐜

= 𝐫𝟐((𝟒𝐑 + 𝐫)𝟐 − 𝟐𝐬𝟐) 𝒂𝐧𝐝 

∑𝒙𝟑𝐲𝟑

𝐜𝐲𝐜

= (𝟒𝐑𝐫 + 𝐫𝟐)𝟑 − 𝟏𝟐𝐑𝐫𝟑𝐬𝟐 𝒂𝐧𝐝 𝐧𝐨𝐰,∑
𝟏

𝒙𝟐 + 𝟐𝐲𝐳
𝐜𝐲𝐜

≥
? 𝟐

∑ 𝒙𝐲𝐜𝐲𝐜
+

𝟏

∑ 𝒙𝟐𝐜𝐲𝐜
 

⇔
𝟐(∑ 𝒙𝐲𝐜𝐲𝐜 )(∑ 𝒙𝟐𝐜𝐲𝐜 ) + 𝟐𝒙𝐲𝐳∑ 𝒙𝐜𝐲𝐜 +∑ 𝒙𝟐𝐲𝟐𝐜𝐲𝐜

𝟒𝒙𝐲𝐳∑ 𝒙𝟑𝐜𝐲𝐜 + 𝟐∑ 𝒙𝟑𝐲𝟑𝐜𝐲𝐜 + 𝟗𝒙𝟐𝐲𝟐𝐳𝟐
≥
? 𝟐∑ 𝒙𝟐𝐜𝐲𝐜 + ∑ 𝒙𝐲𝐜𝐲𝐜

(∑ 𝒙𝐲𝐜𝐲𝐜 )(∑ 𝒙𝟐𝐜𝐲𝐜 )
⇔

𝐯𝐢𝒂 𝐭𝐫𝒂𝐧𝐬𝐟𝐨𝐫𝐦𝒂𝐭𝐢𝐨𝐧
 

𝟐(𝟒𝐑𝐫 + 𝐫𝟐)(𝐬𝟐 − 𝟖𝐑𝐫 − 𝟐𝐫𝟐) + 𝟐𝐫𝟐𝐬𝟐 + 𝐫𝟐((𝟒𝐑 + 𝐫)𝟐 − 𝟐𝐬𝟐)

𝟒𝐫𝟐𝐬𝟐(𝐬𝟐 − 𝟏𝟐𝐑𝐫) + 𝟐((𝟒𝐑𝐫 + 𝐫𝟐)𝟑 − 𝟏𝟐𝐑𝐫𝟑𝐬𝟐) + 𝟗𝐫𝟒𝐬𝟐
≥
? 𝟐(𝐬𝟐 − 𝟖𝐑𝐫 − 𝟐𝐫𝟐) + 𝟒𝐑𝐫 + 𝐫𝟐

(𝟒𝐑𝐫 + 𝐫𝟐)(𝐬𝟐 − 𝟖𝐑𝐫 − 𝟐𝐫𝟐)
 

⇔ −𝟐𝐬𝟔 + (𝟖𝐑𝟐 + 𝟓𝟐𝐑𝐫 − 𝐫𝟐)𝐬𝟒 − 𝐫(𝟏𝟕𝟔𝐑𝟑 + 𝟑𝟒𝟖𝐑𝟐𝐫 + 𝟔𝟎𝐑𝐫𝟐 − 𝟒𝐫𝟑)𝐬𝟐 + 

𝟑𝐫𝟐(𝟒𝐑 + 𝐫)𝟒 ≥
?
⏟
(∗)

𝟎 𝒂𝐧𝐝 𝐧𝐨𝐰, 

𝐏 = −𝟐(𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐)(𝐬𝟒 − 𝐬𝟐(𝟒𝐑𝟐 + 𝟐𝟎𝐑𝐫 − 𝟐𝐫𝟐) + 𝐫(𝟒𝐑 + 𝐫)𝟑) − 
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𝐫(𝟐𝟎𝐑− 𝟏𝟑𝐫)(𝐬𝟒 − 𝐬𝟐(𝟒𝐑𝟐 + 𝟐𝟎𝐑𝐫 − 𝟐𝐫𝟐) + 𝐫(𝟒𝐑 + 𝐫)𝟑) ≥

𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧
𝒂𝐧𝐝

𝐃𝐨𝐮𝐛𝒍𝐞−𝐑𝐨𝐮𝐜𝐡𝐞

𝟎 𝒂𝐧𝐝 
𝐋𝐇𝐒 𝐨𝐟 (∗) − 𝐏 = 𝟎 ⇒ 𝐋𝐇𝐒 𝐨𝐟 (∗) = 𝐏 ≥ 𝟎 ⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 

 

∴
𝟏

𝒙𝟐 + 𝟐𝐲𝐳
+

𝟏

𝐲𝟐 + 𝟐𝐳𝒙
+

𝟏

𝐳𝟐 + 𝟐𝒙𝐲
≥

𝟐

𝒙𝐲 + 𝐲𝐳 + 𝐳𝒙
+

𝟏

𝒙𝟐 + 𝐲𝟐 + 𝐳𝟐
 

 
∀ 𝒙, 𝐲, 𝐳 > 0, ′′ =′′  𝐢𝐟𝐟  𝒙 = 𝐲 = 𝐳 (𝐐𝐄𝐃) 

 

2013. 𝐈𝐟 𝒙, 𝐲, 𝐳 ≥ 𝟎 𝒂𝐧𝐝 𝒙𝐲 + 𝐲𝐳 + 𝐳𝒙 + 𝒙𝐲𝐳 = 𝟒, 𝐭𝐡𝐞𝐧 𝐩𝐫𝐨𝐯𝐞 𝐭𝐡𝒂𝐭 ∶ 

𝒙

𝐲 + 𝐳
+

𝐲

𝐳 + 𝒙
+

𝐳

𝒙 + 𝐲
≥
𝒙 + 𝐲 + 𝐳

𝟐
 

  Proposed by Nguyen Hung Cuong-Vietnam 

Solution by Soumava Chakraborty-Kolkata-India 

𝐂𝒂𝐬𝐞 𝟏  𝐄𝒙𝒂𝐜𝐭𝒍𝐲 𝐨𝐧𝐞 𝐯𝒂𝐫𝐢𝒂𝐛𝒍𝐞 𝐞𝐪𝐮𝒂𝒍𝐬 𝐳𝐞𝐫𝐨 𝒂𝐧𝐝 𝐖𝐋𝐎𝐆 𝐰𝐞 𝐦𝒂𝐲 𝒂𝐬𝐬𝐮𝐦𝐞 

𝒙 = 𝟎 & 𝐭𝐡𝐞𝐧 𝐲𝐳 = 𝟒 (𝐲, 𝐳 > 0) & 𝐋𝐇𝐒 − 𝐑𝐇𝐒 =
𝐲𝐳 = 𝟒 𝐲

𝐳
+
𝐳

𝐲
−
𝐲 + 𝐳

𝟐
=
𝐲𝟐 + 𝐳𝟐

𝟒
−
𝐲 + 𝐳

𝟐
 

≥
(𝐲 + 𝐳)𝟐

𝟖
−
𝐲 + 𝐳

𝟐
≥
𝐲 + 𝐳

𝟐
−
𝐲 + 𝐳

𝟐
 (∵ 𝐲 + 𝐳 ≥ 𝟐√𝐲𝐳 =

𝐲𝐳 = 𝟒
𝟒) = 𝟎 ∴ 𝐋𝐇𝐒 ≥ 𝐑𝐇𝐒 

𝐂𝒂𝐬𝐞 𝟐  𝒙, 𝐲, 𝐳 > 0 𝑎𝐧𝐝 ∑((𝟐 + 𝐲)(𝟐 + 𝐳))

𝐜𝐲𝐜

− (𝟐 + 𝒙)(𝟐 + 𝐲)(𝟐 + 𝐳) = 

𝟒 − (𝒙𝐲 + 𝐲𝐳 + 𝐳𝒙 + 𝒙𝐲𝐳) = 𝟎 ∴∑
𝟏

𝟐 + 𝒙
𝐜𝐲𝐜

= 𝟏 → (𝐦) 𝒂𝐧𝐝 ∵
𝟏

𝟐 + 𝒙
<
𝒙 > 0 𝟏

𝟐
 

∴ 𝐰𝐞 𝐜𝒂𝐧 𝐬𝐞𝐭 ∶
𝟏

𝟐 + 𝒙
=
𝟏

𝟐
− 𝒂 (𝒂 > 0 𝑎𝐧𝐝 𝒂 <

𝟏

𝟐
) ∴ 𝒙 + 𝟐 =

𝟐

𝟏 − 𝟐𝒂
 

⇒ 𝒙 =
𝟐𝒂

𝟏
𝟐 − 𝒂

→ (𝟏) 𝒂𝐧𝐝 𝐬𝐢𝐦𝐢𝒍𝒂𝐫𝐥𝐲,𝐰𝐞 𝐬𝐞𝐭 ∶
𝟏

𝟐 + 𝐲
=
𝟏

𝟐
− 𝐛 𝒂𝐧𝐝 

𝟏

𝟐 + 𝐳
=
𝟏

𝟐
− 𝐜 

∴ 𝟏 =
𝐯𝐢𝒂 (𝐦) 𝟏

𝟐 + 𝒙
+

𝟏

𝟐 + 𝐲
+

𝟏

𝟐 + 𝐳
=
𝟏

𝟐
− 𝒂 +

𝟏

𝟐
− 𝐛 +

𝟏

𝟐
− 𝐜 ⇒ 𝒂 + 𝐛 + 𝐜 =

𝟏

𝟐
→ (𝐢) 

∴ (𝟏) 𝒂𝐧𝐝 (𝐢) ⇒ 𝒙 =
𝟐𝒂

𝐛 + 𝐜
 𝒂𝐧𝐝 𝒂𝐧𝒂𝒍𝐨𝐠𝐨𝐮𝐬𝒍𝐲, 𝐲 =

𝟐𝐛

𝐜 + 𝒂
 𝒂𝐧𝐝 𝐳 =

𝟐𝐜

𝒂 + 𝐛
  

(𝒂, 𝐛, 𝐜 ∈ (𝟎,
𝟏

𝟐
)) ; 𝐧𝐨𝐰,∑

𝒙

𝐲 + 𝐳
𝐜𝐲𝐜

=∑
𝒙𝟐

𝒙𝐲 + 𝐳𝒙
𝐜𝐲𝐜

≥
𝐁𝐞𝐫𝐠𝐬𝐭𝐫𝐨𝐦 (∑ 𝒙𝐜𝐲𝐜 )

𝟐

𝟐∑ 𝒙𝐲𝐜𝐲𝐜
≥
? ∑ 𝒙𝐜𝐲𝐜

𝟐
 

⇔∑𝒙

𝐜𝐲𝐜

≥
?
∑𝒙𝐲

𝐜𝐲𝐜

⇔∑
𝟐𝒂

𝐛+ 𝐜
𝐜𝐲𝐜

≥
?
∑

𝟒𝒂𝐛

(𝐛 + 𝐜)(𝐜 + 𝒂)
𝐜𝐲𝐜
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⇔∑(𝒂(𝒂𝟐 + 𝒂𝐛))

𝐜𝐲𝐜

≥
?
𝟐∑(𝒂𝐛(𝒂 + 𝐛))

𝐜𝐲𝐜

 

⇔∑𝒂𝟑

𝐜𝐲𝐜

+∑𝒂𝟐𝐛

𝐜𝐲𝐜

+∑𝒂𝐛𝟐

𝐜𝐲𝐜

+ 𝟑𝒂𝐛𝐜 ≥
?
𝟐∑𝒂𝟐𝐛

𝐜𝐲𝐜

+ 𝟐∑𝒂𝐛𝟐

𝐜𝐲𝐜

 

⇔∑𝒂𝟑

𝐜𝐲𝐜

+ 𝟑𝒂𝐛𝐜 ≥
?
∑𝒂𝟐𝐛

𝐜𝐲𝐜

+∑𝒂𝐛𝟐

𝐜𝐲𝐜

→ 𝐭𝐫𝐮𝐞 𝐯𝐢𝒂 𝐒𝐜𝐡𝐮𝐫 𝒂𝐧𝐝 𝐬𝐨, 

𝒙

𝐲 + 𝐳
+

𝐲

𝐳 + 𝒙
+

𝐳

𝒙 + 𝐲
≥
𝒙 + 𝐲 + 𝐳

𝟐
 ∀ 𝒙, 𝐲, 𝐳 ≥ 𝟎│𝒙𝐲 + 𝐲𝐳 + 𝐳𝒙 + 𝒙𝐲𝐳 = 𝟒, 

′′ =′′  𝐢𝐟𝐟 (
𝒙 = 𝟎

𝐲 = 𝐳 = 𝟐
)  𝐨𝐫 (

𝐲 = 𝟎
𝐳 = 𝒙 = 𝟐

)  𝐨𝐫 (
𝐳 = 𝟎

𝒙 = 𝐲 = 𝟐
)  𝐨𝐫 (𝒙 = 𝐲 = 𝐳 = 𝟏) (𝐐𝐄𝐃) 

 

2014. 𝐈𝐟 𝒂, 𝐛, 𝐜 > 0 𝑎𝐧𝐝 𝒂 + 𝐛 + 𝐜 = 𝟑 𝐭𝐡𝐞𝐧 𝐩𝐫𝐨𝐯𝐞 𝐭𝐡𝒂𝐭 ∶ 

𝒂𝟐𝐛𝟐 + 𝐛𝟐𝐜𝟐 + 𝐜𝟐𝒂𝟐 + 𝟓(𝒂𝐛 + 𝐛𝐜 + 𝐜𝒂) ≤ 𝟏𝟖 

  Proposed by Nguyen Hung Cuong-Vietnam 

Solution by Soumava Chakraborty-Kolkata-India 

𝟏𝟖 −∑𝒂𝟐𝐛𝟐

𝐜𝐲𝐜

− 𝟓∑𝒂𝐛

𝐜𝐲𝐜

= 

𝟏𝟖

𝟖𝟏
(∑𝒂

𝐜𝐲𝐜

)

𝟒

−∑𝒂𝟐𝐛𝟐

𝐜𝐲𝐜

−
𝟓

𝟗
(∑𝒂𝐛

𝐜𝐲𝐜

)(∑𝒂

𝐜𝐲𝐜

)

𝟐

 (∵∑𝒂

𝐜𝐲𝐜

= 𝟑) 

=
𝟏

𝟗
(𝟐(∑𝒂

𝐜𝐲𝐜

)

𝟒

− 𝟗∑𝒂𝟐𝐛𝟐

𝐜𝐲𝐜

− 𝟓(∑𝒂𝐛

𝐜𝐲𝐜

)(∑𝒂

𝐜𝐲𝐜

)

𝟐

) 

=
𝟏

𝟗
(𝟐∑𝒂𝟒

𝐜𝐲𝐜

+ 𝟑∑𝒂𝟑𝐛

𝐜𝐲𝐜

+ 𝟑∑𝒂𝐛𝟑

𝐜𝐲𝐜

− 𝟕∑𝒂𝟐𝐛𝟐

𝐜𝐲𝐜

− 𝒂𝐛𝐜∑𝒂

𝐜𝐲𝐜

) 

≥
𝐀𝐌−𝐆𝐌 𝟏

𝟗
(𝟐∑𝒂𝟒

𝐜𝐲𝐜

+ 𝟔∑𝒂𝟐𝐛𝟐

𝐜𝐲𝐜

− 𝟕∑𝒂𝟐𝐛𝟐

𝐜𝐲𝐜

− 𝒂𝐛𝐜∑𝒂

𝐜𝐲𝐜

) ≥ 

𝟏

𝟗
(𝟐∑𝒂𝟐𝐛𝟐

𝐜𝐲𝐜

−∑𝒂𝟐𝐛𝟐

𝐜𝐲𝐜

− 𝒂𝐛𝐜∑𝒂

𝐜𝐲𝐜

) =
𝟏

𝟗
(∑𝒂𝟐𝐛𝟐

𝐜𝐲𝐜

− 𝒂𝐛𝐜∑𝒂

𝐜𝐲𝐜

) ≥ 𝟎 
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∵ ∑𝒂𝟐𝐛𝟐

𝐜𝐲𝐜

≥ 𝒂𝐛. 𝐛𝐜 + 𝐛𝐜. 𝐜𝒂 + 𝐜𝒂. 𝒂𝐛 = 𝒂𝐛𝐜∑𝒂

𝐜𝐲𝐜

 𝒂𝐧𝐝 𝐬𝐨, 

𝒂𝟐𝐛𝟐 + 𝐛𝟐𝐜𝟐 + 𝐜𝟐𝒂𝟐 + 𝟓(𝒂𝐛 + 𝐛𝐜 + 𝐜𝒂) ≤ 𝟏𝟖 

∀ 𝒂, 𝐛, 𝐜 > 0│𝑎 + 𝐛 + 𝐜 = 𝟑, ′′ =′′  𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 = 𝟏 (𝐐𝐄𝐃) 

2015.  𝐈𝐟 𝒂, 𝐛, 𝐜 ≥ 𝟎 𝒂𝐧𝐝 𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐 = 𝟏 𝐭𝐡𝐞𝐧 𝐩𝐫𝐨𝐯𝐞 𝐭𝐡𝒂𝐭 ∶ 

𝟑 − 𝟓(𝒂𝐛 + 𝐛𝐜 + 𝐜𝒂) + 𝟔𝒂𝐛𝐜(𝒂 + 𝐛 + 𝐜) ≥ 𝟎 

  Proposed by Nguyen Hung Cuong-Vietnam 

Solution by Soumava Chakraborty-Kolkata-India 

𝐂𝒂𝐬𝐞 𝟏  𝐄𝒙𝒂𝐜𝐭𝒍𝐲 𝐭𝐰𝐨 𝐯𝒂𝐫𝐢𝒂𝐛𝒍𝐞𝐬 𝐞𝐪𝐮𝒂𝒍 𝐳𝐞𝐫𝐨 𝒂𝐧𝐝 𝐖𝐋𝐎𝐆 𝐰𝐞 𝐦𝒂𝐲 𝒂𝐬𝐬𝐮𝐦𝐞 
𝐛 = 𝐜 = 𝟎 (𝒂 = 𝟏) 𝒂𝐧𝐝 𝐭𝐡𝐞𝐧 ∶ 𝐋𝐇𝐒 = 𝟑 > 0 

𝐂𝒂𝐬𝐞 𝟐  𝐄𝒙𝒂𝐜𝐭𝒍𝐲 𝐨𝐧𝐞 𝐯𝒂𝐫𝐢𝒂𝐛𝒍𝐞 𝐞𝐪𝐮𝒂𝒍𝐬 𝐳𝐞𝐫𝐨 𝒂𝐧𝐝 𝐖𝐋𝐎𝐆 𝐰𝐞 𝐦𝒂𝐲 𝒂𝐬𝐬𝐮𝐦𝐞 𝒂 = 𝟎  

𝒂𝐧𝐝 𝐭𝐡𝐞𝐧 𝐛𝟐 + 𝐜𝟐 = 𝟏 (𝐛, 𝐜 > 0) 𝒂𝐧𝐝 𝐭𝐡𝐞𝐧 ∶ 𝐋𝐇𝐒 = 𝟑 − 𝟓𝐛𝐜 

≥
𝐀𝐌−𝐆𝐌

𝟑 −
𝟓

𝟐
(𝐛𝟐 + 𝐜𝟐) = 𝟑 −

𝟓

𝟐
=
𝟏

𝟐
> 0 

𝐂𝒂𝐬𝐞 𝟑  𝒂, 𝐛, 𝐜 > 0 𝑎𝐧𝐝 𝒂𝐬𝐬𝐢𝐠𝐧𝐢𝐧𝐠 𝐛 + 𝐜 = 𝒙, 𝐜 + 𝒂 = 𝐲, 𝒂 + 𝐛 = 𝐳 ⇒ 𝒙 + 𝐲 − 𝐳 = 𝟐𝐜 
> 𝟎, 𝒚 + 𝒛 − 𝒙 = 𝟐𝒂 > 𝟎 𝒂𝐧𝐝 𝐳 + 𝒙 − 𝐲 = 𝟐𝐛 > 0 ⇒ 𝑥 + 𝐲 > 𝑧, 𝐲 + 𝐳 > 𝒙, 𝐳 + 𝒙 > 𝒚 

⇒ 𝒙, 𝐲, 𝐳 𝐟𝐨𝐫𝐦 𝐬𝐢𝐝𝐞𝐬 𝐨𝐟 𝒂 𝐭𝐫𝐢𝒂𝐧𝐠𝐥𝐞 𝐗𝐘𝐙 𝐰𝐢𝐭𝐡 𝐬𝐞𝐦𝐢𝐩𝐞𝐫𝐢𝐦𝐞𝐭𝐞𝐫, 𝐜𝐢𝐫𝐜𝐮𝐦𝐫𝒂𝐝𝐢𝐮𝐬 𝒂𝐧𝐝 𝐢𝐧𝐫𝒂𝐝𝐢𝐮𝐬 

= 𝐬,𝐑, 𝐫 (𝐬𝒂𝐲); 𝐭𝐡𝐞𝐧 ∶ ∑𝒂

𝐜𝐲𝐜

= 𝐬, 𝒂𝐛𝐜 = 𝐫𝟐𝐬,∑𝒂𝐛

𝐜𝐲𝐜

= 𝟒𝐑𝐫 + 𝐫𝟐, 

∑𝒂𝟐

𝐜𝐲𝐜

= 𝐬𝟐 − 𝟖𝐑𝐫 − 𝟐𝐫𝟐 𝒂𝐧𝐝 𝐭𝐡𝐞𝐧,𝐦𝒂𝐢𝐧 𝐢𝐧𝐞𝐪𝐮𝒂𝒍𝐢𝐭𝐲 𝐛𝐞𝐜𝐨𝐦𝐞𝐬 (𝐬𝐢𝐧𝐜𝐞 ∑𝒂𝟐

𝐜𝐲𝐜

= 𝟏) : 

𝟑 (∑𝒂𝟐

𝐜𝐲𝐜

)

𝟐

− 𝟓(∑𝒂𝟐

𝐜𝐲𝐜

)(∑𝒂𝐛

𝐜𝐲𝐜

) + 𝟔𝒂𝐛𝐜(∑𝒂

𝐜𝐲𝐜

) ≥
?
𝟎 ⇔
𝐯𝐢𝒂 𝐭𝐫𝒂𝐧𝐬𝐟𝐨𝐫𝐦𝒂𝐭𝐢𝐨𝐧

 

𝟑(𝐬𝟐 − 𝟖𝐑𝐫 − 𝟐𝐫𝟐)𝟐 − 𝟓(𝐬𝟐 − 𝟖𝐑𝐫 − 𝟐𝐫𝟐)(𝟒𝐑𝐫 + 𝐫𝟐) + 𝟔𝐫𝟐𝐬𝟐 ≥
?
𝟎 

⇔ 𝟑𝐬𝟒 − (𝟔𝟖𝐑𝐫 + 𝟏𝟏𝐫𝟐)𝐬𝟐 + 𝟐𝟐𝐫𝟐(𝟒𝐑 + 𝐫)𝟐 ≥
?
𝟎 ≥

?
⏟
(∗)

𝟎 𝒂𝐧𝐝 ∵ 𝐏 = 

𝟑(𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐)𝟐 − (𝟐𝟖𝐑𝐫 − 𝟒𝟏𝐫𝟐) (𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐 −
𝐫𝟐(𝐑 − 𝟐𝐫)

𝐑 − 𝐫
) 

≥

𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧
𝒂𝐧𝐝

𝐑𝐨𝐮𝐜𝐡𝐞 + 𝐄𝐮𝐥𝐞𝐫

𝟎  
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(
∵ (𝐑 − 𝐫)(𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐) ≥

𝐑𝐨𝐮𝐜𝐡𝐞
(𝐑 − 𝐫) (𝟐𝐑𝟐 − 𝟔𝐑𝐫 + 𝟒𝐫𝟐 − 𝟐(𝐑 − 𝟐𝐫)√𝐑𝟐 − 𝟐𝐑𝐫)

= (𝐑 − 𝟐𝐫) ((𝐑− 𝐫 − √𝐑𝟐 − 𝟐𝐑𝐫)
𝟐

+ 𝐫𝟐) ≥
𝐄𝐮𝐥𝐞𝐫

𝐫𝟐(𝐑 − 𝟐𝐫) ⇒ 𝐬𝟐 ≥ 𝟏𝟔𝐑𝐫 − 𝟓𝐫𝟐 +
𝐫𝟐(𝐑 − 𝟐𝐫)

𝐑 − 𝐫

) 

∴ 𝐢𝐧 𝐨𝐫𝐝𝐞𝐫 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 (∗), 𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 𝐋𝐇𝐒 𝐨𝐟 (∗) ≥
?
𝐏 

⇔ 𝟑𝟐𝐭𝟑 − 𝟏𝟒𝟒𝐭𝟐 + 𝟏𝟗𝟓𝐭 − 𝟕𝟎 ≥
?
𝟎 (𝐭 =

𝐑

𝐫
) ⇔ (𝐭 − 𝟐)((𝐭 − 𝟐)(𝟑𝟐𝐭 − 𝟏𝟔) + 𝟑) ≥

?
𝟎 

→ 𝐭𝐫𝐮𝐞 ∵ 𝐭 ≥
𝐄𝐮𝐥𝐞𝐫

𝟐 ⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 ∴ 𝟑 − 𝟓(∑𝒂𝐛

𝐜𝐲𝐜

) + 𝟔𝒂𝐛𝐜(∑𝒂

𝐜𝐲𝐜

) ≥ 𝟎 𝒂𝐧𝐝 𝐬𝐨, 

𝟑 − 𝟓(𝒂𝐛 + 𝐛𝐜 + 𝐜𝒂) + 𝟔𝒂𝐛𝐜(𝒂 + 𝐛 + 𝐜) ≥ 𝟎 ∀ 𝒂, 𝐛, 𝐜 ≥ 𝟎│𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐 = 𝟏, 

′′ =′′  𝐢𝐟𝐟  𝒂 = 𝐛 = 𝐜 =
𝟏

√𝟑
 (𝐐𝐄𝐃) 

 

2016. 𝐈𝐟 𝒂𝟐𝐛 + 𝐛𝟐𝐜 + 𝐜𝟐𝒂 + 𝟏𝟔 = 𝒂𝐛𝟐 + 𝐛𝐜𝟐 + 𝒄𝒂𝟐 𝐭𝐡𝐞𝐧 𝐩𝐫𝐨𝐯𝐞 𝐭𝐡𝒂𝐭 ∶ 

𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐 ≥ 𝟖 

  Proposed by Nguyen Hung Cuong-Vietnam 

Solution by Soumava Chakraborty-Kolkata-India 

∑𝒂𝟐

𝐜𝐲𝐜

≥
?
𝟖 ⇔ (∑𝒂𝟐

𝐜𝐲𝐜

)

𝟐

≥
?
𝟓𝟏𝟐 =

𝟓𝟏𝟐

𝟐𝟓𝟔
(∑𝒂𝐛𝟐

𝐜𝐲𝐜

−∑𝒂𝟐𝐛

𝐜𝐲𝐜

)

𝟐

  

(∵ 𝟏𝟔 =∑𝒂𝐛𝟐

𝐜𝐲𝐜

−∑𝒂𝟐𝐛

𝐜𝐲𝐜

) ⇔∑𝒂𝟔

𝐜𝐲𝐜

+∑𝒂𝟒𝐛𝟐

𝐜𝐲𝐜

+∑𝒂𝟐𝐛𝟒

𝐜𝐲𝐜

+ 𝟒𝒂𝐛𝐜∑𝒂𝟑

𝐜𝐲𝐜

+ 

𝟒∑𝒂𝟑𝐛𝟑

𝐜𝐲𝐜

+ 𝟏𝟖𝒂𝟐𝐛𝟐𝐜𝟐 ≥
?
⏟
(∗)

𝟒𝒂𝐛𝐜(∑𝒂𝟐𝐛

𝐜𝐲𝐜

+∑𝒂𝐛𝟐

𝐜𝐲𝐜

) 

𝐍𝐨𝐰, 𝐢𝐟 𝛌 =∑𝒂𝟐𝐛

𝐜𝐲𝐜

+∑𝒂𝐛𝟐

𝐜𝐲𝐜

, 𝐭𝐡𝐞𝐧 𝛌𝟐 =∑𝒂𝟒𝐛𝟐

𝐜𝐲𝐜

+∑𝒂𝟐𝐛𝟒

𝐜𝐲𝐜

+ 𝟐𝒂𝐛𝐜∑𝒂𝟑

𝐜𝐲𝐜

+ 

𝟐∑𝒂𝟑𝐛𝟑

𝐜𝐲𝐜

+ 𝟔𝒂𝟐𝐛𝟐𝐜𝟐 + 𝟐𝒂𝐛𝐜(∑𝒂𝟐𝐛

𝐜𝐲𝐜

+∑𝒂𝐛𝟐

𝐜𝐲𝐜

)  𝒂𝐧𝐝 𝐬𝐨, (∗) 𝐜𝒂𝐧 𝐛𝐞 𝐰𝐫𝐢𝐭𝐭𝐞𝐧 𝒂𝐬 ∶ 

(∑𝒂𝟔

𝐜𝐲𝐜

+ 𝟐∑𝒂𝟑𝐛𝟑

𝐜𝐲𝐜

) + 𝟐𝒂𝐛𝐜∑𝒂𝟑

𝐜𝐲𝐜

+ 𝟏𝟐𝒂𝟐𝐛𝟐𝐜𝟐 + 𝛌𝟐 ≥
?
𝟔𝒂𝐛𝐜𝛌 ⇔ 
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((∑𝒂𝟑

𝐜𝐲𝐜

)

𝟐

+ 𝟐𝒂𝐛𝐜∑𝒂𝟑

𝐜𝐲𝐜

+ 𝒂𝟐𝐛𝟐𝐜𝟐) + (𝛌𝟐 − 𝟔𝒂𝐛𝐜𝛌 + 𝟗𝒂𝟐𝐛𝟐𝐜𝟐) + 𝟐𝒂𝟐𝐛𝟐𝐜𝟐 ≥
?
𝟎 

⇔ (∑𝒂𝟑

𝐜𝐲𝐜

+ 𝒂𝐛𝐜)

𝟐

+ (𝛌 − 𝟑𝒂𝐛𝐜)𝟐 + 𝟐𝒂𝟐𝐛𝟐𝐜𝟐 ≥
?
𝟎 → 𝐭𝐫𝐮𝐞 ⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 

∴ 𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐 ≥ 𝟖 ∀ 𝒂, 𝐛, 𝐜 ∈ ℝ│𝒂𝟐𝐛 + 𝐛𝟐𝐜 + 𝐜𝟐𝒂 + 𝟏𝟔 = 𝒂𝐛𝟐 + 𝐛𝐜𝟐 + 𝒄𝒂𝟐, 

′′ =′′  𝐢𝐟𝐟 (
𝒂 = 𝟎
𝐛 = 𝟐
𝐜 = −𝟐

)  𝐨𝐫 (
𝐛 = 𝟎
𝐜 = 𝟐
𝒂 = −𝟐

)  𝐨𝐫 (
𝐜 = 𝟎
𝒂 = 𝟐
𝐛 = −𝟐

) (𝐐𝐄𝐃) 

 

2017. 𝑰𝒇  𝒎 ≥ 𝟎  𝒂𝒏𝒅  𝒂, 𝒃, 𝒄, 𝒙, 𝒚 > 0  𝑎𝑛𝑑  𝑎𝑏𝑐 = 1  𝑡ℎ𝑒𝑛: 
𝟏

𝒂𝟐𝒎+𝟏(𝒃𝒙 + 𝒄𝒚)𝒎
+

𝟏

𝒃𝟐𝒎+𝟏(𝒄𝒙 + 𝒂𝒚)𝒎
+

𝟏

𝒄𝟐𝒎+𝟏(𝒂𝒙 + 𝒃𝒚)𝒎
≥

𝟑

(𝒙 + 𝒚)𝒎
 

 
Proposed by D.M.Bătinețu-Giurgiu, Mihaly Bencze-Romania 

Solution by Mirsadix Muzefferov-Azerbaijan 
𝟏

𝒂𝟐𝒎+𝟏(𝒃𝒙 + 𝒄𝒚)𝒎
+

𝟏

𝒃𝟐𝒎+𝟏(𝒄𝒙 + 𝒂𝒚)𝒎
+

𝟏

𝒄𝟐𝒎+𝟏(𝒂𝒙 + 𝒃𝒚)𝒎
= 

=

𝟏
𝒂𝒎+𝟏

𝒂𝒎(𝒃𝒙 + 𝒄𝒚)𝒎
+

𝟏
𝒃𝒎+𝟏

𝒃𝒎(𝒄𝒙 + 𝒂𝒚)𝒎
+

𝟏
𝒄𝒎+𝟏

𝒄𝒎(𝒂𝒙 + 𝒃𝒚)𝒎
= 

=
(
𝟏
𝒂)

𝒎+𝟏

(𝒂𝒃𝒙 + 𝒂𝒄𝒚)𝒎
+

(
𝟏
𝒃)

𝒎+𝟏

(𝒃𝒄𝒙 + 𝒂𝒃𝒚)𝒎
+

(
𝟏
𝒄)

𝒎+𝟏

(𝒂𝒄𝒙 + 𝒃𝒄𝒚)𝒎
≥⏞

𝑹𝒂𝒅𝒐𝒏 (
𝟏
𝒂 +

𝟏
𝒃 +

𝟏
𝒄)

𝒎+𝟏

((𝒂𝒃 + 𝒃𝒄 + 𝒂𝒄)(𝒙 + 𝒚))
𝒎 = 

=
(𝒂𝒃 + 𝒃𝒄 + 𝒂𝒄)𝒎+𝟏

(𝒂𝒃 + 𝒃𝒄 + 𝒂𝒄)𝒎(𝒂𝒃𝒄)𝒎+𝟏(𝒙 + 𝒚)𝒎
=
𝒂𝒃 + 𝒃𝒄 + 𝒂𝒄

(𝒙 + 𝒚)𝒎
≥⏞

𝑨𝑴−𝑮𝑴 𝟑((𝒂𝒃𝒄)𝟐)
𝟏
𝟑

(𝒙 + 𝒚)𝒎
=

𝟑

(𝒙 + 𝒚)𝒎
 

 
𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚  𝒉𝒐𝒍𝒅𝒔  𝒇𝒐𝒓 ∶   𝒂 = 𝒃 = 𝒄 = 𝟏. 

 
2018. 𝐈𝐟 𝒂, 𝐛, 𝐜 ≥ 𝟎 𝐭𝐡𝐞𝐧 𝐩𝐫𝐨𝐯𝐞 𝐭𝐡𝒂𝐭 ∶ 

(𝒂 + 𝐛 + 𝐜)𝟐(𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐)𝟐 ≥ 𝟐𝟕𝒂𝐛𝐜(𝒂𝟑 + 𝐛𝟑 + 𝐜𝟑) 

  Proposed by Dang Ngoc Minh-Vietnam 

Solution by Soumava Chakraborty-Kolkata-India 

𝐈𝐟 𝐞𝒙𝒂𝐜𝐭𝒍𝐲 𝐭𝐡𝐫𝐞𝐞 𝐯𝒂𝐫𝐢𝒂𝐛𝒍𝐞𝐬 𝐞𝐪𝐮𝒂𝒍 𝐭𝐨 𝐳𝐞𝐫𝐨 𝐨𝐫 𝐢𝐟 𝐞𝒙𝒂𝐜𝐭𝒍𝐲 𝐭𝐰𝐨 𝐯𝒂𝐫𝐢𝒂𝐛𝒍𝐞𝐬 𝐞𝐪𝐮𝒂𝒍 
𝐭𝐨 𝐳𝐞𝐫𝐨 𝐨𝐫 𝐢𝐟 𝐞𝒙𝒂𝐜𝐭𝒍𝐲 𝐨𝐧𝐞 𝐯𝒂𝐫𝐢𝒂𝐛𝒍𝐞 𝐞𝐪𝐮𝒂𝒍𝐬 𝐭𝐨 𝐳𝐞𝐫𝐨,𝐑𝐇𝐒 = 𝟎 𝒂𝐧𝐝 𝐋𝐇𝐒 ≥ 𝟎 𝒂𝐧𝐝 𝐧𝐨𝐰, 

𝐰𝐞 𝐟𝐨𝐜𝐮𝐬 𝐨𝐧 𝐭𝐡𝐞 𝐜𝒂𝐬𝐞 𝐰𝐡𝐞𝐧 𝒂, 𝐛, 𝐜 > 0 𝒂𝐧𝐝 𝒂𝐬𝐬𝐢𝐠𝐧𝐢𝐧𝐠 𝐛 + 𝐜 = 𝒙, 𝐜 + 𝒂 = 𝐲, 
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𝒂 + 𝐛 = 𝐳 ⇒ 𝒙 + 𝐲 − 𝐳 = 𝟐𝐜 > 0, 𝑦 + 𝑧 − 𝑥 = 𝟐𝒂 > 𝟎 𝒂𝐧𝐝 𝐳 + 𝒙 − 𝐲 = 𝟐𝐛 > 0 
⇒ 𝒙 + 𝐲 > 𝑧, 𝐲 + 𝐳 > 𝒙, 𝐳 + 𝒙 > 𝒚 ⇒ 𝒙, 𝐲, 𝐳 𝐟𝐨𝐫𝐦 𝐬𝐢𝐝𝐞𝐬 𝐨𝐟 𝒂 𝐭𝐫𝐢𝒂𝐧𝐠𝐥𝐞 𝐗𝐘𝐙 

𝐰𝐢𝐭𝐡 𝐬𝐞𝐦𝐢𝐩𝐞𝐫𝐢𝐦𝐞𝐭𝐞𝐫, 𝐜𝐢𝐫𝐜𝐮𝐦𝐫𝒂𝐝𝐢𝐮𝐬 𝒂𝐧𝐝 𝐢𝐧𝐫𝒂𝐝𝐢𝐮𝐬 = 𝐬,𝐑, 𝐫 (𝐬𝒂𝐲); 𝐭𝐡𝐞𝐧 ∶ ∑𝒂

𝐜𝐲𝐜

= 𝐬, 

𝒂𝐛𝐜 = 𝐫𝟐𝐬,∑𝒂𝟐

𝐜𝐲𝐜

= 𝐬𝟐 − 𝟖𝐑𝐫 − 𝟐𝐫𝟐,∑𝒂𝟑

𝐜𝐲𝐜

= 𝐬𝟑 − 𝟏𝟐𝐑𝐫𝐬 𝒂𝐧𝐝 𝐭𝐡𝐞𝐧,𝐦𝒂𝐢𝐧 𝐢𝐧𝐞𝐪𝐮𝒂𝒍𝐢𝐭𝐲 

𝐛𝐞𝐜𝐨𝐦𝐞𝐬 ∶ 𝐬𝟐(𝐬𝟐 − 𝟖𝐑𝐫 − 𝟐𝐫𝟐)𝟐 ≥
?
𝟐𝟕𝐫𝟐𝐬𝟐(𝐬𝟐 − 𝟏𝟐𝐑𝐫) 

⇔ 𝐬𝟒 − (𝟏𝟔𝐑𝐫 + 𝟑𝟏𝐫𝟐)𝐬𝟐 + 𝟒𝐫𝟐(𝟏𝟔𝐑𝟐 + 𝟖𝟗𝐑𝐫 + 𝐫𝟐) ≥
?
⏟
(∗)

𝟎 𝒂𝐧𝐝 

∵ (𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐)𝟐 ≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

𝟎 ∴ 𝐢𝐧 𝐨𝐫𝐝𝐞𝐫 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 (∗), 𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 

𝐋𝐇𝐒 𝐨𝐟 (∗) ≥
?
(𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐)𝟐 ⇔ (𝟏𝟔𝐑− 𝟒𝟏𝐫)𝐬𝟐 ≥

?
⏟
(∗∗)

𝐫(𝟏𝟗𝟐𝐑𝟐 − 𝟓𝟏𝟔𝐑𝐫 + 𝟐𝟏𝐫𝟐) 

𝐂𝒂𝐬𝐞 𝟏  𝟏𝟔𝐑 − 𝟒𝟏𝐫 ≥ 𝟎 𝒂𝐧𝐝 𝐭𝐡𝐞𝐧 ∶ (𝟏𝟔𝐑 − 𝟒𝟏𝐫)𝐬𝟐 ≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

 

(𝟏𝟔𝐑 − 𝟒𝟏𝐫)(𝟏𝟔𝐑𝐫 − 𝟓𝐫𝟐) ≥
?
𝐑𝐇𝐒 𝐨𝐟 (∗∗) ⇔ 𝟐𝐫(𝐑 − 𝟐𝐫)(𝟏𝟔𝐑 − 𝟐𝟑𝐫) ≥

?
𝟎 

→ 𝐭𝐫𝐮𝐞 ∵ 𝐑 ≥
𝐄𝐮𝐥𝐞𝐫

𝟐𝐫 ⇒ (∗∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 

𝐂𝒂𝐬𝐞 𝟐  𝟏𝟔𝐑 − 𝟒𝟏𝐫 < 0 𝑎𝐧𝐝 𝐭𝐡𝐞𝐧 ∶ (𝟏𝟔𝐑− 𝟒𝟏𝐫)𝐬𝟐 ≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

 

(𝟏𝟔𝐑− 𝟒𝟏𝐫)(𝟒𝐑𝟐 + 𝟒𝐑𝐫 + 𝟑𝐫𝟐) ≥
?
𝐑𝐇𝐒 𝐨𝐟 (∗∗) 

⇔ 𝟏𝟔𝐑𝟑 − 𝟕𝟑𝐑𝟐𝐫 + 𝟏𝟎𝟎𝐑𝐫𝟐 − 𝟑𝟔𝐫𝟑 ≥
?
𝟎 ⇔ (𝐑 − 𝟐𝐫)𝟐(𝟏𝟔𝐑− 𝟗𝐫) ≥

?
𝟎 → 𝐭𝐫𝐮𝐞 

∵ 𝐑 ≥
𝐄𝐮𝐥𝐞𝐫

𝟐𝐫 ⇒ (∗∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 ∴ 𝐜𝐨𝐦𝐛𝐢𝐧𝐢𝐧𝐠 𝐛𝐨𝐭𝐡 𝐜𝒂𝐬𝐞𝐬, (∗∗) ⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 
∴ (𝒂 + 𝐛 + 𝐜)𝟐(𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐)𝟐 ≥ 𝟐𝟕𝒂𝐛𝐜(𝒂𝟑 + 𝐛𝟑 + 𝐜𝟑) ∀ 𝒂, 𝐛, 𝐜 > 0 𝒂𝐧𝐝 𝐬𝐨, 

(𝒂 + 𝐛 + 𝐜)𝟐(𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐)𝟐 ≥ 𝟐𝟕𝒂𝐛𝐜(𝒂𝟑 + 𝐛𝟑 + 𝐜𝟑) ∀ 𝒂, 𝐛, 𝐜 ≥ 𝟎, 
′′ =′′  𝐢𝐟𝐟  𝒂 = 𝐛 = 𝐜 ≥ 𝟎 (𝐐𝐄𝐃) 

 

2019. 𝐈𝐟 𝒂, 𝐛, 𝐜 ≥ 𝟎 𝐭𝐡𝐞𝐧 𝐩𝐫𝐨𝐯𝐞 𝐭𝐡𝒂𝐭 ∶ 

(𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐)𝟐(𝒂𝟑 + 𝐛𝟑 + 𝐜𝟑) ≥ 𝟗𝒂𝐛𝐜(𝒂𝟒 + 𝐛𝟒 + 𝐜𝟒) 

  Proposed by Dang Ngoc Minh-Vietnam 

Solution by Soumava Chakraborty-Kolkata-India 

𝐈𝐟 𝐞𝒙𝒂𝐜𝐭𝒍𝐲 𝐭𝐡𝐫𝐞𝐞 𝐯𝒂𝐫𝐢𝒂𝐛𝒍𝐞𝐬 𝐞𝐪𝐮𝒂𝒍 𝐭𝐨 𝐳𝐞𝐫𝐨 𝐨𝐫 𝐢𝐟 𝐞𝒙𝒂𝐜𝐭𝒍𝐲 𝐭𝐰𝐨 𝐯𝒂𝐫𝐢𝒂𝐛𝒍𝐞𝐬 
𝐞𝐪𝐮𝒂𝒍 𝐭𝐨 𝐳𝐞𝐫𝐨 𝐨𝐫 𝐢𝐟 𝐞𝒙𝒂𝐜𝐭𝒍𝐲 𝐨𝐧𝐞 𝐯𝒂𝐫𝐢𝒂𝐛𝒍𝐞 𝐞𝐪𝐮𝒂𝒍𝐬 𝐭𝐨 𝐳𝐞𝐫𝐨,𝐑𝐇𝐒 = 𝟎 𝒂𝐧𝐝 𝐋𝐇𝐒 ≥ 𝟎 

𝒂𝐧𝐝 𝐧𝐨𝐰 𝐰𝐞 𝐟𝐨𝐜𝐮𝐬 𝐨𝐧 𝐭𝐡𝐞 𝐜𝒂𝐬𝐞 𝐰𝐡𝐞𝐧 𝒂, 𝐛, 𝐜 > 0 𝒂𝐧𝐝 𝒂𝐬𝐬𝐢𝐠𝐧𝐢𝐧𝐠 𝐛 + 𝐜 = 𝒙, 
𝐜 + 𝒂 = 𝐲, 𝒂 + 𝐛 = 𝐳 ⇒ 𝒙 + 𝐲 − 𝐳 = 𝟐𝐜 > 0, 𝑦 + 𝑧 − 𝑥 = 𝟐𝒂 > 𝟎 𝒂𝐧𝐝 𝐳 + 𝒙 − 𝐲 = 
𝟐𝐛 > 0 ⇒ 𝑥 + 𝐲 > 𝑧, 𝐲 + 𝐳 > 𝒙, 𝐳 + 𝒙 > 𝒚 ⇒ 𝒙, 𝐲, 𝐳 𝐟𝐨𝐫𝐦 𝐬𝐢𝐝𝐞𝐬 𝐨𝐟 𝒂 𝐭𝐫𝐢𝒂𝐧𝐠𝐥𝐞 𝐗𝐘𝐙 
𝐰𝐢𝐭𝐡 𝐬𝐞𝐦𝐢𝐩𝐞𝐫𝐢𝐦𝐞𝐭𝐞𝐫, 𝐜𝐢𝐫𝐜𝐮𝐦𝐫𝒂𝐝𝐢𝐮𝐬 𝒂𝐧𝐝 𝐢𝐧𝐫𝒂𝐝𝐢𝐮𝐬 = 𝐬, 𝐑, 𝐫 (𝐬𝒂𝐲); 𝐭𝐡𝐞𝐧 ∶ 
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∑𝒂

𝐜𝐲𝐜

= 𝐬, 𝒂𝐛𝐜 = 𝐫𝟐𝐬,∑𝒂𝟐

𝐜𝐲𝐜

= 𝐬𝟐 − 𝟖𝐑𝐫 − 𝟐𝐫𝟐,∑𝒂𝟑

𝐜𝐲𝐜

= 𝐬𝟑 − 𝟏𝟐𝐑𝐫𝐬, 

∑𝒂𝟒

𝐜𝐲𝐜

= (𝐬𝟐 − 𝟖𝐑𝐫 − 𝟐𝐫𝟐)𝟐 − 𝟐𝐫𝟐((𝟒𝐑+ 𝐫)𝟐 − 𝟐𝐬𝟐) 𝒂𝐧𝐝 𝐭𝐡𝐞𝐧, 𝐭𝐡𝐞 𝐦𝒂𝐢𝐧 𝐢𝐧𝐞𝐪𝐮𝒂𝒍𝐢𝐭𝐲 

𝐛𝐞𝐜𝐨𝐦𝐞𝐬 ∶ (𝐬𝟐 − 𝟖𝐑𝐫 − 𝟐𝐫𝟐)𝟐(𝐬𝟑 − 𝟏𝟐𝐑𝐫𝐬) ≥
?
𝟗𝐫𝟐𝐬 (

(𝐬𝟐 − 𝟖𝐑𝐫 − 𝟐𝐫𝟐)𝟐 −

𝟐𝐫𝟐((𝟒𝐑 + 𝐫)𝟐 − 𝟐𝐬𝟐)
) ⇔ 

𝐬𝟔 − (𝟐𝟖𝐑𝐫 + 𝟏𝟑𝐫𝟐)𝐬𝟒 + 𝐫𝟐(𝟐𝟓𝟔𝐑𝟐 + 𝟐𝟐𝟒𝐑𝐫 + 𝟒𝐫𝟐)𝐬𝟐 − 

𝐫𝟑(𝟕𝟔𝟖𝐑𝟑 + 𝟔𝟕𝟐𝐑𝟐𝐫 + 𝟏𝟗𝟐𝐑𝐫𝟐 + 𝟏𝟖𝐫𝟑) ≥
?
⏟
(∗)

𝟎 𝒂𝐧𝐝 ∵ 𝐏 = (𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐)𝟑 + 

(𝟐𝟎𝐑𝐫 − 𝟐𝟖𝐫𝟐)(𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐)𝟐 ≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

𝟎 ∴ 𝐢𝐧 𝐨𝐫𝐝𝐞𝐫 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 (∗), 𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 

𝐩𝐫𝐨𝐯𝐞 ∶ 𝐋𝐇𝐒 𝐨𝐟 (∗) ≥
?
𝐏 ⇔ (𝟏𝟐𝟖𝐑𝟐 − 𝟑𝟗𝟐𝐑𝐫 + 𝟐𝟎𝟗𝐫𝟐)𝐬𝟐 ≥

?
⏟
(∗∗)

 

𝐫(𝟏𝟕𝟗𝟐𝐑𝟑 − 𝟓𝟖𝟓𝟔𝐑𝟐𝐫 + 𝟑𝟗𝟕𝟐𝐑𝐫𝟐 − 𝟓𝟓𝟕𝐫𝟑) 

𝐂𝒂𝐬𝐞 𝟏  𝟏𝟐𝟖𝐑𝟐 − 𝟑𝟗𝟐𝐑𝐫 + 𝟐𝟎𝟗𝐫𝟐 ≥ 𝟎 𝒂𝐧𝐝 𝐭𝐡𝐞𝐧 ∶ 𝐋𝐇𝐒 𝐨𝐟 (∗∗) ≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

 

(𝟏𝟐𝟖𝐑𝟐 − 𝟑𝟗𝟐𝐑𝐫 + 𝟐𝟎𝟗𝐫𝟐)(𝟏𝟔𝐑𝐫 − 𝟓𝐫𝟐) ≥
?
𝐑𝐇𝐒 𝐨𝐟 (∗∗) 

⇔ 𝟔𝟒𝐭𝟑 − 𝟐𝟔𝟒𝐭𝟐 + 𝟑𝟑𝟑𝐭 − 𝟏𝟐𝟐 ≥
?
𝟎 (𝐭 =

𝐑

𝐫
) 

⇔ (𝐭 − 𝟐)((𝐭 − 𝟐)(𝟔𝟒𝐭 − 𝟖) + 𝟒𝟓) ≥
?
𝟎 → 𝐭𝐫𝐮𝐞 ∵ 𝐭 ≥

𝐄𝐮𝐥𝐞𝐫
𝟐 ⇒ (∗∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 

𝐂𝒂𝐬𝐞 𝟐  𝟏𝟐𝟖𝐑𝟐 − 𝟑𝟗𝟐𝐑𝐫 + 𝟐𝟎𝟗𝐫𝟐 < 0 𝑎𝐧𝐝 𝐭𝐡𝐞𝐧 ∶ 𝐋𝐇𝐒 𝐨𝐟 (∗∗) ≥
𝐑𝐨𝐮𝐜𝐡𝐞

 

(𝟏𝟐𝟖𝐑𝟐 − 𝟑𝟗𝟐𝐑𝐫 + 𝟐𝟎𝟗𝐫𝟐) (𝟐𝐑𝟐 + 𝟏𝟎𝐑𝐫 − 𝐫𝟐 + 𝟐(𝐑− 𝟐𝐫).√𝐑𝟐 − 𝟐𝐑𝐫) ≥
?

 

𝐫(𝟏𝟕𝟗𝟐𝐑𝟑 − 𝟓𝟖𝟓𝟔𝐑𝟐𝐫 + 𝟑𝟗𝟕𝟐𝐑𝐫𝟐 − 𝟓𝟓𝟕𝐫𝟑) 

⇔ 𝟐(𝐑 − 𝟐𝐫)(𝟏𝟐𝟖𝐑𝟑 − 𝟑𝟗𝟐𝐑𝟐𝐫 + 𝟑𝟐𝟗𝐑𝐫𝟐 − 𝟖𝟕𝐫𝟑) ≥
?

 

−𝟐(𝟏𝟐𝟖𝐑𝟐 − 𝟑𝟗𝟐𝐑𝐫 + 𝟐𝟎𝟗𝐫𝟐)(𝐑 − 𝟐𝐫).√𝐑𝟐 − 𝟐𝐑𝐫 𝒂𝐧𝐝 ∵ 𝐑 − 𝟐𝐫 ≥
𝐄𝐮𝐥𝐞𝐫

𝟎 𝒂𝐧𝐝 
𝟏𝟐𝟖𝐑𝟑 − 𝟑𝟗𝟐𝐑𝟐𝐫 + 𝟑𝟐𝟗𝐑𝐫𝟐 − 𝟖𝟕𝐫𝟑 > 0 ∴ 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 (∗∗), 𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 

(𝟏𝟐𝟖𝐑𝟑 − 𝟑𝟗𝟐𝐑𝟐𝐫 + 𝟑𝟐𝟗𝐑𝐫𝟐 − 𝟖𝟕𝐫𝟑)𝟐 >
?
(𝐑𝟐 − 𝟐𝐑𝐫)(𝟏𝟐𝟖𝐑𝟐 − 𝟑𝟗𝟐𝐑𝐫 + 𝟐𝟎𝟗𝐫𝟐)𝟐 

⇔ 𝟏𝟔(𝟐𝟎𝟒𝟖𝐭𝟓 − 𝟏𝟎𝟔𝟐𝟒𝐭𝟒 + 𝟏𝟖𝟔𝟐𝟒𝐭𝟑 − 𝟏𝟐𝟏𝟖𝟒𝐭𝟐 + 𝟏𝟖𝟖𝟐𝐭 + 𝟒𝟕𝟑) + 𝟒𝐭 + 𝟏 >
?
𝟎 

⇔ 𝟏𝟔((𝐭 − 𝟐) ((𝐭 − 𝟐)(𝟐𝟎𝟒𝟖𝐭𝟑 − 𝟐𝟒𝟑𝟐𝐭𝟐 + 𝟕𝟎𝟒𝐭 + 𝟑𝟔𝟎) + 𝟓𝟎𝟔) + 𝟒𝟓) + 𝟒𝐭 + 𝟏 

>
?
𝟎 → 𝐭𝐫𝐮𝐞 ∵ 𝐭 ≥

𝐄𝐮𝐥𝐞𝐫
𝟐 ⇒ (∗∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 ∴ 𝐜𝐨𝐦𝐛𝐢𝐧𝐢𝐧𝐠 𝐛𝐨𝐭𝐡 𝐜𝒂𝐬𝐞𝐬, (∗∗) ⇒ (∗) 

𝐢𝐬 𝐭𝐫𝐮𝐞 ∀ ∆ 𝐗𝐘𝐙𝐬,𝐑,𝐫 ∴ (𝒂
𝟐 + 𝐛𝟐 + 𝐜𝟐)𝟐(𝒂𝟑 + 𝐛𝟑 + 𝐜𝟑) ≥ 𝟗𝒂𝐛𝐜(𝒂𝟒 + 𝐛𝟒 + 𝐜𝟒) 

∀ 𝒂, 𝐛, 𝐜 > 0 𝑎𝐧𝐝 𝐬𝐨, (𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐)𝟐(𝒂𝟑 + 𝐛𝟑 + 𝐜𝟑) ≥ 𝟗𝒂𝐛𝐜(𝒂𝟒 + 𝐛𝟒 + 𝐜𝟒) 
∀ 𝒂, 𝐛, 𝐜 ≥ 𝟎, ′′ =′′  𝐢𝐟𝐟  𝒂 = 𝐛 = 𝐜 ≥ 𝟎 (𝐐𝐄𝐃) 
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2020. 𝐈𝐟 𝒂, 𝐛, 𝐜 ≥ 𝟎 𝒂𝐧𝐝 𝒂 + 𝐛 + 𝐜 = 𝟑𝒂𝐛𝐜 𝐭𝐡𝐞𝐧 𝐩𝐫𝐨𝐯𝐞 𝐭𝐡𝒂𝐭 ∶ 

(𝒂𝟑 + 𝐛𝟑 + 𝐜𝟑)(𝒂𝟒 + 𝐛𝟒 + 𝐜𝟒) ≥ 𝟑(𝒂𝟓 + 𝐛𝟓 + 𝐜𝟓) 

  Proposed by Dang Ngoc Minh-Vietnam 

Solution by Soumava Chakraborty-Kolkata-India 

(𝒂𝟑 + 𝐛𝟑 + 𝐜𝟑)(𝒂𝟒 + 𝐛𝟒 + 𝐜𝟒) ≥ 𝟑(𝒂𝟓 + 𝐛𝟓 + 𝐜𝟓) 

⇔ (∑𝒂

𝐜𝐲𝐜

)(∑𝒂𝟑

𝐜𝐲𝐜

)(∑𝒂𝟒

𝐜𝐲𝐜

) ≥
(⦁)

𝟑(∑𝒂𝟓

𝐜𝐲𝐜

) . 𝟑𝒂𝐛𝐜 (∵ ∑𝒂

𝐜𝐲𝐜

= 𝟑𝒂𝐛𝐜   ) 

𝐈𝐟 𝒂𝐧𝐲 𝐨𝐧𝐞 𝐯𝒂𝐫𝐢𝒂𝐛𝒍𝐞 𝐞𝐪𝐮𝒂𝒍𝐬 𝐭𝐨 𝐳𝐞𝐫𝐨, 𝐭𝐡𝐞𝐧 ∶ ∑𝒂

𝐜𝐲𝐜

= 𝟑𝒂𝐛𝐜 ⇒ 𝒂 = 𝐛 = 𝐜 = 𝟎 & 𝐭𝐡𝐞𝐧 ∶ 

𝐋𝐇𝐒 = 𝐑𝐇𝐒 = 𝟎 𝒂𝐧𝐝 𝐧𝐨𝐰 𝐰𝐞 𝐟𝐨𝐜𝐮𝐬 𝐨𝐧 𝐭𝐡𝐞 𝐜𝒂𝐬𝐞 𝐰𝐡𝐞𝐧 𝒂, 𝐛, 𝐜 > 0 𝑎𝐧𝐝 𝒂𝐬𝐬𝐢𝐠𝐧𝐢𝐧𝐠 
𝐛 + 𝐜 = 𝒙, 𝐜 + 𝒂 = 𝐲, 𝒂 + 𝐛 = 𝐳 ⇒ 𝒙 + 𝐲 − 𝐳 = 𝟐𝐜 > 0, 𝑦 + 𝑧 − 𝑥 = 𝟐𝒂 > 𝟎 𝒂𝐧𝐝 
𝐳 + 𝒙 − 𝐲 = 𝟐𝐛 > 0 ⇒ 𝑥 + 𝐲 > 𝑧, 𝐲 + 𝐳 > 𝒙, 𝐳 + 𝒙 > 𝒚 ⇒ 𝒙, 𝐲, 𝐳 𝐟𝐨𝐫𝐦 𝐬𝐢𝐝𝐞𝐬 𝐨𝐟  

𝒂 𝐭𝐫𝐢𝒂𝐧𝐠𝐥𝐞 𝐗𝐘𝐙 𝐰𝐢𝐭𝐡 𝐬𝐞𝐦𝐢𝐩𝐞𝐫𝐢𝐦𝐞𝐭𝐞𝐫, 𝐜𝐢𝐫𝐜𝐮𝐦𝐫𝒂𝐝𝐢𝐮𝐬 𝒂𝐧𝐝 𝐢𝐧𝐫𝒂𝐝𝐢𝐮𝐬 = 𝐬,𝐑, 𝐫 (𝐬𝒂𝐲); 

𝐭𝐡𝐞𝐧 ∶ ∑𝒂

𝐜𝐲𝐜

= 𝐬, 𝒂𝐛𝐜 = 𝐫𝟐𝐬,∑𝒂𝐛

𝐜𝐲𝐜

= 𝟒𝐑𝐫 + 𝐫𝟐,∑𝒂𝟐

𝐜𝐲𝐜

= 𝐬𝟐 − 𝟖𝐑𝐫 − 𝟐𝐫𝟐, 

∑𝒂𝟐𝐛𝟐

𝐜𝐲𝐜

= 𝐫𝟐((𝟒𝐑+ 𝐫)𝟐 − 𝟐𝐬𝟐),∑𝒂𝟑

𝐜𝐲𝐜

= 𝐬𝟑 − 𝟏𝟐𝐑𝐫𝐬, 

∑𝒂𝟒

𝐜𝐲𝐜

= (𝐬𝟐 − 𝟖𝐑𝐫 − 𝟐𝐫𝟐)𝟐 − 𝟐𝐫𝟐((𝟒𝐑 + 𝐫)𝟐 − 𝟐𝐬𝟐), 

∑𝒂𝟓

𝐜𝐲𝐜

= (∑𝒂

𝐜𝐲𝐜

)

𝟓

− 𝟓(𝒂 + 𝐛)(𝐛 + 𝐜)(𝐜 + 𝒂)(∑𝒂𝟐

𝐜𝐲𝐜

+∑𝒂𝐛

𝐜𝐲𝐜

) 

= 𝐬𝟓 − 𝟐𝟎𝐑𝐫𝐬(𝐬𝟐 − 𝟒𝐑𝐫 − 𝐫𝟐) 𝒂𝐧𝐝 𝐭𝐡𝐞𝐧, (⦁) 𝐛𝐞𝐜𝐨𝐦𝐞𝐬 ∶ 

𝐬(𝐬𝟑 − 𝟏𝟐𝐑𝐫𝐬) ((𝐬𝟐 − 𝟖𝐑𝐫 − 𝟐𝐫𝟐)𝟐 − 𝟐𝐫𝟐((𝟒𝐑 + 𝐫)𝟐 − 𝟐𝐬𝟐)) ≥
?

 

𝟗𝐫𝟐𝐬 (𝐬𝟓 − 𝟐𝟎𝐑𝐫𝐬(𝐬𝟐 − 𝟒𝐑𝐫 − 𝐫𝟐)) ⇔ 𝐬𝟔 − (𝟐𝟖𝐑𝐫 + 𝟗𝐫𝟐)𝐬𝟒 + 

𝐫𝟐(𝟐𝟐𝟒𝐑𝟐 + 𝟏𝟗𝟔𝐑𝐫 + 𝟐𝐫𝟐)𝐬𝟐 − 𝐫𝟑(𝟑𝟖𝟒𝐑𝟑 + 𝟗𝟏𝟐𝐑𝟐𝐫 + 𝟐𝟎𝟒𝐑𝐫𝟐) ≥
?
⏟
(∗)

𝟎 𝒂𝐧𝐝 ∵ 𝐏 = 

(𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐)𝟑 + (𝟐𝟎𝐑𝐫 − 𝟐𝟒𝐫𝟐)(𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐)𝟐 ≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

𝟎 ∴ 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 (∗), 

𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 𝐋𝐇𝐒 𝐨𝐟 (∗) ≥
?
𝐏 ⇔ (𝟗𝟔𝐑𝟐 − 𝟐𝟗𝟐𝐑𝐫 + 𝟏𝟔𝟕𝐫𝟐)𝐬𝟐 ≥

?
⏟
(∗∗)

 

𝐫(𝟏𝟒𝟎𝟖𝐑𝟑 − 𝟒𝟓𝟗𝟐𝐑𝟐𝐫 + 𝟑𝟑𝟒𝟒𝐑𝐫𝟐 − 𝟒𝟕𝟓𝐫𝟑) 

𝐂𝒂𝐬𝐞 𝟏  𝟗𝟔𝐑𝟐 − 𝟐𝟗𝟐𝐑𝐫 + 𝟏𝟔𝟕𝐫𝟐 ≥ 𝟎 𝒂𝐧𝐝 𝐭𝐡𝐞𝐧 ∶ 𝐋𝐇𝐒 𝐨𝐟 (∗∗) ≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

 

(𝟗𝟔𝐑𝟐 − 𝟐𝟗𝟐𝐑𝐫 + 𝟏𝟔𝟕𝐫𝟐)(𝟏𝟔𝐑𝐫 − 𝟓𝐫𝟐) ≥
?
𝐑𝐇𝐒 𝐨𝐟 (∗∗) 
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⇔ 𝟑𝟐𝐭𝟑 − 𝟏𝟒𝟎𝐭𝟐 + 𝟏𝟗𝟕𝐭 − 𝟗𝟎 ≥
?
𝟎 (𝐭 =

𝐑

𝐫
) 

⇔ (𝐭 − 𝟐)((𝐭 − 𝟐)(𝟑𝟐𝐭 − 𝟏𝟐) + 𝟐𝟏) ≥
?
𝟎 → 𝐭𝐫𝐮𝐞 ∵ 𝐭 ≥

𝐄𝐮𝐥𝐞𝐫
𝟐 ⇒ (∗∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 

𝐂𝒂𝐬𝐞 𝟐  𝟗𝟔𝐑𝟐 − 𝟐𝟗𝟐𝐑𝐫 + 𝟏𝟔𝟕𝐫𝟐 < 0 𝑎𝐧𝐝 𝐭𝐡𝐞𝐧 ∶ 𝐋𝐇𝐒 𝐨𝐟 (∗∗) ≥
𝐑𝐨𝐮𝐜𝐡𝐞

 

(𝟗𝟔𝐑𝟐 − 𝟐𝟗𝟐𝐑𝐫 + 𝟏𝟔𝟕𝐫𝟐) (𝟐𝐑𝟐 + 𝟏𝟎𝐑𝐫 − 𝐫𝟐 + 𝟐(𝐑 − 𝟐𝐫).√𝐑𝟐 − 𝟐𝐑𝐫) ≥
?
  

𝐫(𝟏𝟒𝟎𝟖𝐑𝟑 − 𝟒𝟓𝟗𝟐𝐑𝟐𝐫 + 𝟑𝟑𝟒𝟒𝐑𝐫𝟐 − 𝟒𝟕𝟓𝐫𝟑) ⇔ 

𝟐(𝐑 − 𝟐𝐫)(𝟗𝟔𝐑𝟑 − 𝟑𝟐𝟒𝐑𝟐𝐫 + 𝟑𝟎𝟕𝐑𝐫𝟐 − 𝟕𝟕𝐫𝟑) ≥
?

 

−𝟐(𝟗𝟔𝐑𝟐 − 𝟐𝟗𝟐𝐑𝐫 + 𝟏𝟔𝟕𝐫𝟐)(𝐑 − 𝟐𝐫).√𝐑𝟐 − 𝟐𝐑𝐫 𝒂𝐧𝐝 ∵ 𝐑 − 𝟐𝐫 ≥
𝐄𝐮𝐥𝐞𝐫

𝟎 𝒂𝐧𝐝  
𝟗𝟔𝐑𝟑 − 𝟑𝟐𝟒𝐑𝟐𝐫 + 𝟑𝟎𝟕𝐑𝐫𝟐 − 𝟕𝟕𝐫𝟑 > 0 ∴ 𝐢𝐧 𝐨𝐫𝐝𝐞𝐫 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 (∗∗), 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 

(𝟗𝟔𝐑𝟑 − 𝟑𝟐𝟒𝐑𝟐𝐫 + 𝟑𝟎𝟕𝐑𝐫𝟐 − 𝟕𝟕𝐫𝟑)𝟐 >
?
(𝐑𝟐 − 𝟐𝐑𝐫)(𝟗𝟔𝐑𝟐 − 𝟐𝟗𝟐𝐑𝐫 + 𝟏𝟔𝟕𝐫𝟐)𝟐 

⇔ 𝟏𝟔(𝟕𝟔𝟖𝐭𝟓 − 𝟒𝟎𝟗𝟔𝐭𝟒 + 𝟕𝟒𝟎𝟒𝐭𝟑 − 𝟒𝟗𝟐𝟓𝐭𝟐 + 𝟓𝟑𝟏𝐭 + 𝟑𝟕𝟎) + 𝟒𝐭 + 𝟗 >
?
𝟎 

⇔ 𝟏𝟔((𝐭 − 𝟐) ((𝐭 − 𝟐)(𝟕𝟔𝟖𝐭𝟑 − 𝟏𝟎𝟐𝟒𝐭𝟐 + 𝟐𝟑𝟔𝐭 + 𝟏𝟏𝟓) + 𝟒𝟕) + 𝟒) + 𝟒𝐭 + 𝟗 >
?
𝟎 

→ 𝐭𝐫𝐮𝐞 ∵ 𝐭 ≥
𝐄𝐮𝐥𝐞𝐫

𝟐 ⇒ (∗∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 ∴ 𝐜𝐨𝐦𝐛𝐢𝐧𝐢𝐧𝐠 𝐛𝐨𝐭𝐡 𝐜𝒂𝐬𝐞𝐬, (∗∗) ⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 ∀ 
∆ 𝐗𝐘𝐙𝐬,𝐑,𝐫 ∴ (𝒂

𝟑 + 𝐛𝟑 + 𝐜𝟑)(𝒂𝟒 + 𝐛𝟒 + 𝐜𝟒) ≥ 𝟑(𝒂𝟓 + 𝐛𝟓 + 𝐜𝟓) ∀ 𝒂, 𝐛, 𝐜 > 0 𝑎𝐧𝐝 𝐬𝐨, 

(𝒂𝟑 + 𝐛𝟑 + 𝐜𝟑)(𝒂𝟒 + 𝐛𝟒 + 𝐜𝟒) ≥ 𝟑(𝒂𝟓 + 𝐛𝟓 + 𝐜𝟓) ∀ 𝒂, 𝐛, 𝐜 ≥ 𝟎│𝒂 + 𝐛 + 𝐜 = 𝟑𝒂𝐛𝐜, 

′′ =′′  𝐢𝐟𝐟  𝒂 = 𝐛 = 𝐜 = 𝟎 𝐨𝐫 𝒂 = 𝐛 = 𝐜 = 𝟏 (𝐐𝐄𝐃) 
 

2021. If 𝒂, 𝒃 > 0 , 𝑎 + 𝑏 + 𝒂𝒏𝒃𝒏 = 𝟑,𝒏 ∈ 𝑵 then: 
𝒂𝒏 + 𝒃𝒏 ≥ 𝟐 

 
Proposed by Marin Chirciu-Romania 

Solution by Tapas Das-India 
 

𝒂 + 𝒃 + 𝒂𝒏𝒃𝒏 = 𝟑 ⇒ (𝒂 + 𝒃) + (
(𝒂 + 𝒃)𝟐

𝟒
)

𝒏

≥
𝑨𝑴−𝑮𝑴

 𝟑 

⇒ 𝟒𝒏(𝒂 + 𝒃) + (𝒂 + 𝒃)𝟐𝒏 ≥ 𝟑.𝟒𝒏 ⇒ 𝒕𝟐𝒏 + 𝟒𝒏𝒕 − 𝟑. 𝟒𝒏 ≥
𝒕=𝒂+𝒃>0

𝟎 
 

⇒ (𝒕𝟐𝒏 − 𝟒𝒏) + 𝟒𝒏(𝒕 − 𝟐) ≥ 𝟎 ⇒ (𝒕 − 𝟐) (
𝒕𝟐𝒏 − 𝟐𝟐𝒏

𝒕 − 𝟐
+ 𝟒𝒏) ≥ 𝟎 

 

⇒ (𝒕 − 𝟐)(𝒕𝟐𝒏−𝟏 + 𝟐. 𝒕𝟐𝒏−𝟐 + 𝟐𝟐. 𝒕𝟐𝒏−𝟑 +⋯𝟐𝟐𝒏−𝟏 + 𝟒𝒏) ≥ 𝟎 ⇒ (𝒕 − 𝟐) ≥ 𝟎 𝒐𝒓 𝒕 ≥ 𝟐 
 

𝒂𝒏 + 𝒃𝒏 =
𝒂𝒏

𝟏𝒏−𝟏
+
𝒃𝒏

𝟏𝒏−𝟏
≥

𝑹𝒂𝒅𝒐𝒏 (𝒂 + 𝒃)𝒏

𝟐𝒏−𝟏
=

𝒕=𝒂+𝒃>0 𝒕𝒏

𝟐𝒏−𝟏
≥
𝒕≥𝟐 𝟐𝒏

𝟐𝒏−𝟏
= 𝟐 

 
Equality holds for  a=b=1. 
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2022. If 𝒙, 𝒚 > 0,
𝟏

𝒙
+
𝟏

𝒚
≤ 𝟐 , 𝒏 ∈ 𝑵 then: 

 

√𝒙𝟑 + (𝒏𝟐 − 𝟏)𝒚𝟐 + √𝒚𝟑 + (𝒏𝟐 − 𝟏)𝒙𝟐 ≥ 𝟐𝒏 
 

Proposed by Marin Chirciu-Romania 
Solution by Tapas Das-India 
 

𝟏

𝒙
+
𝟏

𝒚
≤ 𝟐 𝒐𝒓 (𝒙 + 𝒚) ≤ 𝟐𝒙𝒚 𝒐𝒓 (𝒙 + 𝒚) ≤

𝑨𝑴−𝑮𝑴
 𝟐
(𝒙 + 𝒚)𝟐

𝟒
 𝒐𝒓 𝒙 + 𝒚 ≥ 𝟐 (𝟏) 

 

𝒙
𝟑
𝟐 + 𝒚

𝟑
𝟐 =

𝒙
𝟑
𝟐

𝟏
𝟏
𝟐

+
𝒚
𝟑
𝟐

𝟏
𝟏
𝟐

≥
𝑹𝒂𝒅𝒐𝒏 (𝒙 + 𝒚)

𝟑
𝟐

𝟐
𝟏
𝟐

≥
(𝟏) 𝟐

𝟑
𝟐

𝟐
𝟏
𝟐

= 𝟐 

 

√𝒙𝟑 + (𝒏𝟐 − 𝟏)𝒚𝟐 + √𝒚𝟑 + (𝒏𝟐 − 𝟏)𝒙𝟐 = 
 

=   √(𝒙
𝟑
𝟐)
𝟐

+ (𝒏𝟐 − 𝟏)𝒚𝟐 +√(𝒚
𝟑
𝟐)
𝟐

+ (𝒏𝟐 − 𝟏)𝒙𝟐 ≥
𝑴𝒊𝒏𝒌𝒐𝒘𝒔𝒌𝒊

 

≥ √(𝒙
𝟑
𝟐 + 𝒚

𝟑
𝟐)
𝟐

+ (√𝒏𝟐 − 𝟏𝒙 + √𝒏𝟐 − 𝟏𝒚)
𝟐

= √(𝒙
𝟑
𝟐 + 𝒚

𝟑
𝟐)
𝟐

+ (𝒏𝟐 − 𝟏)(𝒙 + 𝒚)𝟐 = 

 

≥ √𝟐𝟐 + (𝒏𝟐 − 𝟏)(𝟐)𝟐 = 𝟐𝒏 
 

Equality holds for x=y=1. 

 
2023. 𝐈𝐟 𝒂, 𝐛, 𝐜 > 𝟎 𝒂𝐧𝐝 𝒂𝐛 + 𝐛𝐜 + 𝐜𝒂 + 𝒂𝐛𝐜 = 𝟒 𝐭𝐡𝐞𝐧 𝐩𝐫𝐨𝐯𝐞 𝐭𝐡𝒂𝐭 ∶ 

𝒂𝐛 + 𝐜

𝒂𝟒 + 𝐛𝟒 + 𝐜
+

𝐛𝐜 + 𝒂

𝐛𝟒 + 𝐜𝟒 + 𝒂
+

𝐜𝒂 + 𝐛

𝐜𝟒 + 𝒂𝟒 + 𝐛
−

𝟑

𝒂𝐛𝐜
≤ −𝟏 

  Proposed by Nguyen Hung Cuong-Vietnam 

Solution by Soumava Chakraborty-Kolkata-India 

𝟒 − 𝒂𝐛𝐜 =∑𝒂𝐛

𝐜𝐲𝐜

≥
𝐀𝐌−𝐆𝐌

𝟑. √𝒂𝟐𝐛𝟐𝐜𝟐
𝟐

⇒ 𝐭𝟑 + 𝟑𝐭𝟐 − 𝟒 ≤ 𝟎 (𝐭 = √𝒂𝐛𝐜
𝟑

) 

⇒ (𝐭 − 𝟏)(𝐭 + 𝟐)𝟐 ≤ 𝟎 ⇒ 𝐭 ≤ 𝟏 ⇒ 𝒂𝐛𝐜 ≤
①

𝟏 𝒂𝐧𝐝 ∵ ∑𝒂𝐛

𝐜𝐲𝐜

= 𝟒 − 𝒂𝐛𝐜 ∴∑𝒂𝐛

𝐜𝐲𝐜

≥
②

𝟑 
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𝒂𝐧𝐝 𝐧𝐨𝐰,∑
𝒂𝐛 + 𝐜

𝒂𝟒 + 𝐛𝟒 + 𝐜
𝐜𝐲𝐜

=∑
(𝒂𝐛 + 𝐜)(𝟐 + 𝐜𝟑)

(𝒂𝟒 + 𝐛𝟒 + 𝐜)(𝟏 + 𝟏 + 𝐜𝟑)
𝐜𝐲𝐜

 

≤
𝐑𝐞𝐯𝐞𝐫𝐬𝐞 𝐂𝐁𝐒

∑
(𝒂𝐛 + 𝐜)(𝟐 + 𝐜𝟑)

(𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐)𝟐
𝐜𝐲𝐜

 

=
𝟏

(∑ 𝒂𝟐𝒄𝒚𝒄 )
𝟐 . (𝟐∑𝒂𝐛

𝐜𝐲𝐜

+ 𝟐∑𝒂

𝐜𝐲𝐜

+ 𝒂𝐛𝐜∑𝒂𝟐

𝒄𝒚𝒄

+ (∑𝒂𝟐

𝒄𝒚𝒄

)

𝟐

− 𝟐∑𝒂𝟐𝐛𝟐

𝒄𝒚𝒄

) 

≤
𝐂𝐁𝐒 𝟏

(∑ 𝒂𝟐𝒄𝒚𝒄 )
𝟐 . (𝟐∑𝒂𝐛

𝐜𝐲𝐜

−
𝟐

𝟑
(∑𝒂𝐛

𝐜𝐲𝐜

)

𝟐

+ 𝟐.√𝟑∑𝒂𝟐

𝒄𝒚𝒄

+∑𝒂𝟐

𝒄𝒚𝒄

+ (∑𝒂𝟐

𝒄𝒚𝒄

)

𝟐

)  

(∵ 𝒂𝐛𝐜 ≤
𝐯𝐢𝒂 ①

𝟏) ≤ 

𝟏

(∑ 𝒂𝟐𝒄𝒚𝒄 )
𝟐 .

(

 
 
𝟐∑𝒂𝐛

𝐜𝐲𝐜

−
𝟐

𝟑
. 𝟑 (∑𝒂𝐛

𝐜𝐲𝐜

) + 𝟐.√(∑𝒂𝟐

𝒄𝒚𝒄

)

𝟐

+∑𝒂𝟐

𝒄𝒚𝒄

+ (∑𝒂𝟐

𝒄𝒚𝒄

)

𝟐

)

 
 
  

(∵∑𝒂𝟐

𝒄𝒚𝒄

≥∑𝒂𝐛

𝐜𝐲𝐜

≥
𝐯𝐢𝒂 ②

𝟑) =
𝟑 + ∑ 𝒂𝟐𝒄𝒚𝒄

∑ 𝒂𝟐𝒄𝒚𝒄
≤ 𝟏 +

𝟑

𝟑
∴∑

𝒂𝐛+ 𝐜

𝒂𝟒 + 𝐛𝟒 + 𝐜
𝐜𝐲𝐜

−
𝟑

𝒂𝐛𝐜
 

≤ 𝟐 −
𝟑

𝒂𝐛𝐜
≤

𝐯𝐢𝒂 ①

𝟐 − 𝟑 = −𝟏 𝒂𝐧𝐝 𝐬𝐨,∑
𝒂𝐛 + 𝐜

𝒂𝟒 + 𝐛𝟒 + 𝐜
𝐜𝐲𝐜

−
𝟑

𝒂𝐛𝐜
≤ −𝟏 

∀ 𝒂, 𝐛, 𝐜 > 0│𝑎𝐛 + 𝐛𝐜 + 𝐜𝒂 + 𝒂𝐛𝐜 = 𝟒, ′′ =′′  𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 = 𝟏 (𝐐𝐄𝐃) 
 

2024. 𝐏𝐫𝐨𝐯𝐞 𝐭𝐡𝒂𝐭 𝐢𝐧 𝒂𝐧𝐲 ∆ 𝐀𝐁𝐂 𝐢𝐟 𝒂 + 𝐛 + 𝐜 = 𝟑, 𝐭𝐡𝐞𝐧 ∶ 

𝟒

𝒂 + 𝐛
+

𝟒

𝐛 + 𝐜
+

𝟒

𝐜 + 𝒂
−
𝟏

𝒂
−
𝟏

𝐛
−
𝟏

𝐜
≤ 𝟑 

  Proposed by Nguyen Hung Cuong-Vietnam 

Solution by Soumava Chakraborty-Kolkata-India 

∑
𝟒

𝐛+ 𝐜
𝐜𝐲𝐜

−∑
𝟏

𝒂
𝐜𝐲𝐜

≤
?
𝟑 =

𝟗

∑ 𝒂𝐜𝐲𝐜
 

⇔
𝟒

𝟐𝐬(𝐬𝟐 + 𝟐𝐑𝐫 + 𝐫𝟐)
.∑((𝒂 + 𝐛)(𝐜 + 𝒂))

𝐜𝐲𝐜

−
𝐬𝟐 + 𝟒𝐑𝐫 + 𝐫𝟐

𝟒𝐑𝐫𝐬
≤
? 𝟗

𝟐𝐬
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⇔
𝟒

𝟐𝐬(𝐬𝟐 + 𝟐𝐑𝐫 + 𝐫𝟐)
.((∑𝒂𝟐

𝐜𝐲𝐜

+ 𝟐∑𝒂𝐛

𝐜𝐲𝐜

) +∑𝒂𝐛

𝐜𝐲𝐜

) −
𝐬𝟐 + 𝟒𝐑𝐫 + 𝐫𝟐

𝟒𝐑𝐫𝐬
≤
? 𝟗

𝟐𝐬
 

⇔ 𝟗 +
𝐬𝟐 + 𝟒𝐑𝐫 + 𝐫𝟐

𝟐𝐑𝐫
−
𝟒(𝟓𝐬𝟐 + 𝟒𝐑𝐫 + 𝐫𝟐)

𝐬𝟐 + 𝟐𝐑𝐫 + 𝐫𝟐
≥
?
𝟎 

⇔ 𝐬𝟒 − (𝟏𝟔𝐑𝐫 − 𝟐𝐫𝟐)𝐬𝟐 + 𝐫𝟐(𝟏𝟐𝐑𝟐 + 𝟏𝟔𝐑𝐫 + 𝐫𝟐) ≥
?
⏟
(∗)

𝟎 

𝐍𝐨𝐰, 𝐋𝐇𝐒 𝐨𝐟 (∗) ≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

(𝟏𝟔𝐑𝐫 − 𝟓𝐫𝟐) − 𝐬𝟐(𝟏𝟔𝐑𝐫 − 𝟐𝐫𝟐)𝐬𝟐 + 

𝐫𝟐(𝟏𝟐𝐑𝟐 + 𝟏𝟔𝐑𝐫 + 𝐫𝟐) = 𝐫𝟐(𝟏𝟐𝐑𝟐 + 𝟏𝟔𝐑𝐫 + 𝐫𝟐 − 𝟑𝐬𝟐) ≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

 

𝐫𝟐 (𝟏𝟐𝐑𝟐 + 𝟏𝟔𝐑𝐫 + 𝐫𝟐 − 𝟑(𝟒𝐑𝟐 + 𝟒𝐑𝐫 + 𝟑𝐫𝟐)) = 𝟒𝐫𝟑(𝐑 − 𝟐𝐫) ≥
𝐄𝐮𝒍𝐞𝐫

𝟎 ⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 

∴
𝟒

𝒂 + 𝐛
+

𝟒

𝐛 + 𝐜
+

𝟒

𝐜 + 𝒂
−
𝟏

𝒂
−
𝟏

𝐛
−
𝟏

𝐜
≤ 𝟑 ∀ ∆ 𝐀𝐁𝐂│𝒂 + 𝐛 + 𝐜 = 𝟑, 

′′ =′′  𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 = 𝟏 (𝐐𝐄𝐃) 
 

2025. 𝐈𝐟 𝒂, 𝐛, 𝐜 > 0 𝑎𝐧𝐝 𝒂𝐛𝐜 = 𝟏 𝐭𝐡𝐞𝐧 ∶ 

∑
√𝒂+ 𝐛. (√𝐛 + √𝐜)

√𝒂𝐛(𝐜 + 𝒂) + √𝐜𝒂(𝐛 + 𝐜)
𝐜𝐲𝐜

≥ 𝟑 

  Proposed by Zaza Mzhavanadze-Georgia 

Solution by Soumava Chakraborty-Kolkata-India 

𝐕𝐢𝒂 𝐖𝒂𝒍𝐭𝐞𝐫 𝐉𝒂𝐧𝐨𝐮𝐬, ∀ 𝐀’, 𝐁’, 𝐂’, 𝒙′, 𝐲′, 𝐳′ > 𝟎, 

𝒙′

𝐲′ + 𝐳′
(𝐁′ + 𝐂′) +

𝐲′

𝐳′ + 𝒙′
(𝐂′ +𝐀′) +

𝐳′

𝒙′ + 𝐲′
(𝐀′ + 𝐁′) ≥ √𝟑∑𝐀′𝐁′

𝐜𝐲𝐜

 (𝐯𝐢𝒂 ) →① 

∑
√𝒂 + 𝐛. (√𝐛 + √𝐜)

√𝒂𝐛(𝐜 + 𝒂) + √𝐜𝒂(𝐛 + 𝐜)
𝐜𝐲𝐜

=∑
√𝒂+ 𝐛. (

𝟏

√𝐜
+
𝟏

√𝐛
)

√𝒂(𝐜 + 𝒂)
𝐜 + √

𝒂(𝐛+ 𝐜)
𝐛

𝐜𝐲𝐜

=∑

√𝒂+ 𝐛
𝒂 . (

𝟏

√𝐛
+
𝟏

√𝐜
)

√𝐛+ 𝐜
𝐛

+√
𝐜 + 𝒂
𝐜

𝐜𝐲𝐜

 

=
𝒙′

𝐲′ + 𝐳′
(𝐁′ + 𝐂′) +

𝐲′

𝐳′ + 𝒙′
(𝐂′ + 𝐀′) +

𝐳′

𝒙′ + 𝐲′
(𝐀′ + 𝐁′) 

(𝒙′ = √
𝒂 + 𝐛

𝒂
, 𝐲′ = √

𝐛 + 𝐜

𝐛
, 𝐳′ = √

𝐜 + 𝒂

𝐜
, 𝐀′ =

𝟏

√𝒂
, 𝐁′ =

𝟏

√𝐛
, 𝐂′ =

𝟏

√𝐜
) ≥
𝐯𝐢𝒂 ①

 

√𝟑∑(
𝟏

√𝒂
.
𝟏

√𝐛
)

𝐜𝐲𝐜

≥
𝐀𝐌−𝐆𝐌

𝟑.√√
𝟏

𝒂𝐛𝐜

𝟑

=
𝒂𝐛𝐜 = 𝟏

𝟑; 𝐬𝐨,∑
√𝒂 + 𝐛. (√𝐛 + √𝐜)

√𝒂𝐛(𝐜 + 𝒂) + √𝐜𝒂(𝐛 + 𝐜)
𝐜𝐲𝐜

≥ 𝟑 
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∀ 𝒂, 𝐛, 𝐜 > 0 │𝑎𝐛𝐜 = 𝟏, ′′ =′′  𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 = 𝟏 (𝐐𝐄𝐃) 
 

2026. 𝐈𝐟 𝒂, 𝐛, 𝐜 > 0, 𝑛 ∈ ℕ 𝒂𝐧𝐝 𝒂𝐛𝐜 = 𝟏 𝐭𝐡𝐞𝐧 ∶ 

∑
√𝒂(𝐛𝟒 + 𝐜𝟒) + √𝐜(𝐜𝟒 + 𝒂𝟒)

(
𝐛
𝒂
)
𝐧

. √𝒂𝐛 + (
𝐜
𝒂
)
𝐧
. √𝐛𝐜𝐜𝐲𝐜

≥ 𝟑√𝟐 

  Proposed by Zaza Mzhavanadze-Georgia 

Solution by Soumava Chakraborty-Kolkata-India 

𝐕𝐢𝒂 𝐖𝒂𝒍𝐭𝐞𝐫 𝐉𝒂𝐧𝐨𝐮𝐬, ∀ 𝐀’, 𝐁’, 𝐂’, 𝒙′, 𝐲′, 𝐳′ > 𝟎, 

𝒙′

𝐲′ + 𝐳′
(𝐁′ + 𝐂′) +

𝐲′

𝐳′ + 𝒙′
(𝐂′ +𝐀′) +

𝐳′

𝒙′ + 𝐲′
(𝐀′ + 𝐁′) ≥ √𝟑∑𝐀′𝐁′

𝐜𝐲𝐜

 (𝐯𝐢𝒂 ) →① 

𝐍𝐨𝐰,∑
√𝒂(𝐛𝟒 + 𝐜𝟒) + √𝐜(𝐜𝟒 + 𝒂𝟒)

(
𝐛
𝒂)

𝐧

. √𝒂𝐛 + (
𝐜
𝒂)

𝐧

. √𝐛𝐜𝐜𝐲𝐜

=∑
√𝐛

𝟒 + 𝐜𝟒

𝐜 + √
𝐜𝟒 + 𝒂𝟒

𝒂

(
𝐛
𝒂)

𝐧

. √
𝐛
𝐜 + (

𝐜
𝒂)

𝐧

. √
𝐛
𝒂

𝐜𝐲𝐜

 

= ∑

𝒂𝐧

√𝐛
. (√

𝐛𝟒 + 𝐜𝟒

𝐜
+ √

𝐜𝟒 + 𝒂𝟒

𝒂
)

𝐛𝐧

√𝐜
+
𝐜𝐧

√𝒂
𝐜𝐲𝐜

 

=
𝒙′

𝐲′ + 𝐳′
(𝐁′ + 𝐂′) +

𝐲′

𝐳′ + 𝒙′
(𝐂′ + 𝐀′) +

𝐳′

𝒙′ + 𝐲′
(𝐀′ + 𝐁′) 

(𝒙′ =
𝒂𝐧

√𝐛
, 𝐲′ =

𝐛𝐧

√𝐜
, 𝐳′ =

𝐜𝐧

√𝒂
, 𝐀′ = √

𝒂𝟒 + 𝐛𝟒

𝐛
,𝐁′ = √

𝐛𝟒 + 𝐜𝟒

𝐜
, 𝐂′ = √

𝐜𝟒 + 𝒂𝟒

𝒂
) ≥
𝐯𝐢𝒂 ①

 

√𝟑∑(√
𝒂𝟒 + 𝐛𝟒

𝐛
.√
𝐛𝟒 + 𝐜𝟒

𝐜
)

𝐜𝐲𝐜

≥
𝐀𝐌−𝐆𝐌

𝟑.√√
(𝒂𝟒 + 𝐛𝟒)(𝐛𝟒 + 𝐜𝟒)(𝐜𝟒 + 𝒂𝟒)

𝒂𝐛𝐜

𝟑

≥
𝐂𝐞𝐬𝒂𝐫𝐨

𝟑. √
𝟖𝒂𝟒𝐛𝟒𝐜𝟒

𝒂𝐛𝐜

𝟔

 

=
𝒂𝐛𝐜 = 𝟏

𝟑. √𝟖
𝟔

= 𝟑√𝟐 𝒂𝐧𝐝 𝐬𝐨,∑
√𝒂(𝐛𝟒 + 𝐜𝟒) + √𝐜(𝐜𝟒 + 𝒂𝟒)

(
𝐛
𝒂)

𝐧

. √𝒂𝐛 + (
𝐜
𝒂)

𝐧

. √𝐛𝐜𝐜𝐲𝐜

≥ 𝟑√𝟐 

 

∀ 𝒂, 𝐛, 𝐜 > 0 │𝑎𝐛𝐜 = 𝟏 ∧ 𝐧 ∈ ℕ, ′′ =′′  𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 = 𝟏 (𝐐𝐄𝐃) 
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2027. 𝐅𝐨𝐫 𝒙, 𝐲 ∈ (𝟎,
𝛑

𝟐
]  𝐩𝐫𝐨𝐯𝐞 𝐭𝐡𝒂𝐭 ∶ 

𝟏

𝐬𝐢𝐧𝟐 𝒙 + 𝐬𝐢𝐧𝟐 𝐲
+

𝟏

𝐬𝐢𝐧 𝒙
+

𝟏

𝐬𝐢𝐧 𝐲
≤ 𝟐 +

𝟏

𝐬𝐢𝐧 𝒙 𝐬𝐢𝐧 𝐲
 

  Proposed by Dang Ngoc Minh-Vietnam 

Solution by Soumava Chakraborty-Kolkata-India 

𝐒𝐢𝐧𝐜𝐞 𝒙, 𝐲 ∈ (𝟎,
𝛑

𝟐
] ∴ 𝟎 < 𝐬𝐢𝐧𝒙 , 𝐬𝐢𝐧 𝐲 ≤ 𝟏 ⇒

𝟏

𝐬𝐢𝐧 𝒙
,
𝟏

𝐬𝐢𝐧 𝐲
≥ 𝟏 𝒂𝐧𝐝 𝐬𝐨 𝐰𝐞 

𝐜𝒂𝐧 𝒂𝐬𝐬𝐢𝐠𝐧 ∶
𝟏

𝐬𝐢𝐧𝒙
= 𝟏 + 𝒂 𝒂𝐧𝐝 

𝟏

𝐬𝐢𝐧 𝐲
= 𝟏 + 𝐛;𝐰𝐡𝐞𝐫𝐞 𝒂, 𝐛 ≥ 𝟎 𝒂𝐧𝐝 𝐭𝐡𝐞𝐧 ∶ 

𝟏

𝐬𝐢𝐧𝟐 𝒙 + 𝐬𝐢𝐧𝟐 𝐲
+

𝟏

𝐬𝐢𝐧 𝒙
+

𝟏

𝐬𝐢𝐧 𝐲
≤
?
𝟐 +

𝟏

𝐬𝐢𝐧 𝒙 . 𝐬𝐢𝐧 𝐲
 

⇔
𝟏

(
𝟏

𝟏 + 𝒂)
𝟐

+ (
𝟏

𝟏+ 𝐛)
𝟐 + 𝟏 + 𝒂 + 𝟏 + 𝐛 ≤

?
𝟐 + (𝟏 + 𝒂)(𝟏 + 𝐛) 

⇔
(𝒂 + 𝟏)𝟐(𝐛 + 𝟏)𝟐

(𝒂 + 𝟏)𝟐 + (𝐛 + 𝟏)𝟐
≤
?
𝒂𝐛 + 𝟏 ⇔ 𝒂𝟑𝐛 + 𝒂𝐛𝟑 − 𝒂𝟐𝐛𝟐 − 𝟐𝒂𝐛 + 𝟏 ≥

?
⏟
(∗)

𝟎 

𝐍𝐨𝐰,𝒂𝟑𝐛 + 𝒂𝐛𝟑 − 𝒂𝟐𝐛𝟐 − 𝟐𝒂𝐛 + 𝟏 = 𝒂𝐛(𝒂𝟐 + 𝐛𝟐) − 𝒂𝟐𝐛𝟐 − 𝟐𝒂𝐛 + 𝟏 ≥ 

𝒂𝐛(𝟐𝒂𝐛) − 𝒂𝟐𝐛𝟐 − 𝟐𝒂𝐛 + 𝟏 (∵ 𝒂𝟐 + 𝐛𝟐 ≥ 𝟐𝒂𝐛 ∀ 𝒂, 𝐛 ∈ ℝ 𝒂𝐧𝐝 ∵ 𝒂, 𝐛 ≥ 𝟎 ⇒ 𝒂𝐛 ≥ 𝟎) 

= 𝒂𝟐𝐛𝟐 − 𝟐𝒂𝐛 + 𝟏 = (𝒂𝐛 − 𝟏)𝟐 ≥ 𝟎 ⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 𝐰𝐢𝐭𝐡 𝐞𝐪𝐮𝒂𝒍𝐢𝐭𝐲 𝐢𝐟𝐟 𝒂 = 𝐛 ∧  𝒂𝐛 = 𝟏 

⇒ 𝐢𝐟𝐟 𝒂 = 𝐛 = 𝟏 ⇒ 𝐢𝐟𝐟 
𝟏

𝐬𝐢𝐧 𝒙
=

𝟏

𝐬𝐢𝐧 𝐲
= 𝟐 ⇒ 𝐢𝐟𝐟 𝒙 = 𝐲 =

𝛑

𝟔
 (∵ 𝒙, 𝐲 ∈ (𝟎,

𝛑

𝟐
])  𝒂𝐧𝐝 𝐬𝐨, 

𝟏

𝐬𝐢𝐧𝟐 𝒙 + 𝐬𝐢𝐧𝟐 𝐲
+

𝟏

𝐬𝐢𝐧 𝒙
+

𝟏

𝐬𝐢𝐧 𝐲
≤ 𝟐 +

𝟏

𝐬𝐢𝐧 𝒙 . 𝐬𝐢𝐧 𝐲
 ∀ 𝒙, 𝐲 ∈ (𝟎,

𝛑

𝟐
] , 

′′ = ′′ 𝐢𝐟𝐟 𝒙 = 𝐲 =
𝛑

𝟔
 (𝐐𝐄𝐃) 

2028. 

𝐅𝐨𝐫 𝒂, 𝐛, 𝐜 ≥ 𝟎 𝐩𝐫𝐨𝐯𝐞 𝐭𝐡𝒂𝐭 ∶ 

𝟏

𝟏 + 𝒂
+

𝟏

𝟏 + 𝐛
+

𝟏

𝟏 + 𝐜
≥

𝟏𝟒𝟒

𝟗𝟔 + 𝟒(𝒂 + 𝐛 + 𝐜) + 𝟑𝒂𝐛𝐜
 

  Proposed by Dang Ngoc Minh-Vietnam 
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Solution by Soumava Chakraborty-Kolkata-India 

𝐈𝐟 𝒂 = 𝐛 = 𝐜 = 𝟎, 𝐭𝐡𝐞𝐧 ∶ 𝐋𝐇𝐒 − 𝐑𝐇𝐒 = 𝟑 −
𝟏𝟒𝟒

𝟗𝟔
> 0; 𝐢𝐟 𝐞𝒙𝒂𝐜𝐭𝒍𝐲 𝟐 𝐯𝒂𝐫𝐢𝒂𝐛𝒍𝐞𝐬 

𝐞𝐪𝐮𝒂𝒍 𝐭𝐨 𝐳𝐞𝐫𝐨 𝒂𝐧𝐝 𝐖𝐋𝐎𝐆 𝐰𝐞 𝐦𝒂𝐲 𝒂𝐬𝐬𝐮𝐦𝐞 𝐛 = 𝐜 = 𝟎 (𝒂 > 0), 𝐭𝐡𝐞𝐧 ∶ 𝐋𝐇𝐒 − 𝐑𝐇𝐒 = 
𝟏

𝟏 + 𝒂
+ 𝟐 −

𝟏𝟒𝟒

𝟗𝟔 + 𝟒𝒂
=

𝟏

𝟏 + 𝒂
+
𝟏𝟐 + 𝟐𝒂

𝟐𝟒 + 𝒂
> 0 𝑎𝐧𝐝 𝐢𝐟 𝐞𝒙𝒂𝐜𝐭𝒍𝐲 𝟏 𝐯𝒂𝐫𝐢𝒂𝐛𝒍𝐞 𝐞𝐪𝐮𝒂𝒍𝐬 

𝐭𝐨 𝐳𝐞𝐫𝐨 𝒂𝐧𝐝 𝐖𝐋𝐎𝐆 𝐰𝐞 𝐦𝒂𝐲 𝒂𝐬𝐬𝐮𝐦𝐞 𝒂 = 𝟎 (𝐛, 𝐜 > 0), 𝐭𝐡𝐞𝐧 ∶ 𝐋𝐇𝐒 − 𝐑𝐇𝐒 = 

𝟏 +
𝟏

𝟏 + 𝐛
+

𝟏

𝟏 + 𝐜
−

𝟑𝟔

𝟐𝟒 + 𝐛 + 𝐜
=
𝐛𝟐𝐜 + 𝐛𝐜𝟐 + 𝟏𝟓𝐛 + 𝟏𝟓𝐜 + 𝟑𝟔 + 𝟐𝐛𝟐 + 𝟐𝐜𝟐 − 𝟖𝐛𝐜

(𝟏 + 𝐛)(𝟏 + 𝐜)(𝟐𝟒 + 𝐛 + 𝐜)
 

> 0 ∵ 𝐛𝟐𝐜 + 𝐛𝐜𝟐 + 𝟒𝐛 + 𝟒𝐜 ≥
𝐀𝐌−𝐆𝐌

𝟒. √𝟏𝟔𝐛𝟒𝐜𝟒
𝟒

= 𝟖𝐛𝐜 𝒂𝐧𝐝 𝐰𝐞 𝐧𝐨𝐰 𝐟𝐨𝐜𝐮𝐬 𝐨𝐧 𝐭𝐡𝐞  

𝐜𝒂𝐬𝐞 𝐰𝐡𝐞𝐧 𝒂, 𝐛, 𝐜 > 0 & 𝐭𝐡𝐞𝐧 ∶
𝟏

𝟏 + 𝒂
+

𝟏

𝟏 + 𝐛
+

𝟏

𝟏 + 𝐜
≥

𝟏𝟒𝟒

𝟗𝟔 + 𝟒(𝒂 + 𝐛 + 𝐜) + 𝟑𝒂𝐛𝐜
 

⇔ 𝟑𝒂𝐛𝐜∑𝒂𝐛

𝐜𝐲𝐜

+ 𝟔𝒂𝐛𝐜∑𝒂

𝐜𝐲𝐜

+ 𝟒∑𝒂𝟐𝐛

𝐜𝐲𝐜

+ 𝟒∑𝒂𝐛𝟐

𝐜𝐲𝐜

+ 𝟖∑𝒂𝟐

𝐜𝐲𝐜

+ 𝟔𝟎∑𝒂

𝐜𝐲𝐜

+ 𝟏𝟒𝟒 

≥
?
⏟
(∗)

𝟏𝟐𝟑𝒂𝐛𝐜 + 𝟑𝟐∑𝒂𝐛

𝐜𝐲𝐜

& 𝒏𝐨𝐰,𝟒∑(𝒂𝟐𝐛 + 𝒂𝐛𝟐 + 𝟒𝒂 + 𝟒𝐛)

𝐜𝐲𝐜

≥
𝐀𝐌−𝐆𝐌

 

𝟏𝟔∑√𝟏𝟔𝒂𝟒𝐛𝟒
𝟒

𝐜𝐲𝐜

= 𝟑𝟐∑𝒂𝐛

𝐜𝐲𝐜

 𝒂𝐧𝐝 𝐬𝐨, 𝐢𝐧 𝐨𝐫𝐝𝐞𝐫 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 (∗), 𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 

𝟑𝒂𝐛𝐜∑𝒂𝐛

𝐜𝐲𝐜

+ 𝟔𝒂𝐛𝐜∑𝒂

𝐜𝐲𝐜

+ 𝟖∑𝒂𝟐

𝐜𝐲𝐜

+ 𝟐𝟖∑𝒂

𝐜𝐲𝐜

+ 𝟏𝟒𝟒 ≥
?
⏟
(∗∗)

𝟏𝟐𝟑𝒂𝐛𝐜 

𝐖𝐞 𝐡𝒂𝐯𝐞 𝐯𝐢𝒂 𝐀𝐌 − 𝐆𝐌, 𝐋𝐇𝐒 𝐨𝐟 (∗∗) − 𝐑𝐇𝐒 𝐨𝐟 (∗∗) ≥ 

𝟗𝐭𝟓 + 𝟏𝟖𝐭𝟒 + 𝟐𝟒𝐭𝟐 + 𝟖𝟒𝐭 + 𝟏𝟒𝟒 − 𝟏𝟐𝟑𝐭𝟑 (𝐭 = √𝒂𝐛𝐜
𝟑

) 

= 𝟑(𝐭 − 𝟐)𝟐(𝟑𝐭𝟑 + 𝟏𝟖𝐭𝟐 + 𝟏𝟗𝐭 + 𝟏𝟐) ≥ 𝟎 (∵ 𝐭 > 0) ⇒ (∗∗) ⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 

∴
𝟏

𝟏 + 𝒂
+

𝟏

𝟏 + 𝐛
+

𝟏

𝟏 + 𝐜
≥

𝟏𝟒𝟒

𝟗𝟔 + 𝟒(𝒂 + 𝐛 + 𝐜) + 𝟑𝒂𝐛𝐜
 ∀ 𝒂, 𝐛, 𝐜 ≥ 𝟎, 

′′ = ′′ 𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 = 𝟐 (𝐐𝐄𝐃) 
 

2029.  𝐅𝐨𝐫 𝒂, 𝐛, 𝐜 ≥ 𝟎 𝐩𝐫𝐨𝐯𝐞 𝐭𝐡𝒂𝐭 ∶ 

𝟏

(𝟏 + 𝒂)𝟐
+

𝟏

(𝟏 + 𝐛)𝟐
+

𝟏

(𝟏 + 𝐜)𝟐
+
𝒂𝐛𝐜

𝟒
≥ 𝟏 

  Proposed by Dang Ngoc Minh-Vietnam 

Solution by Soumava Chakraborty-Kolkata-India 

𝐈𝐟 𝒂 = 𝐛 = 𝐜 = 𝟎, 𝐭𝐡𝐞𝐧 ∶ 𝐋𝐇𝐒 − 𝐑𝐇𝐒 = 𝟑 − 𝟏 > 0; 𝐢𝐟 𝐞𝒙𝒂𝐜𝐭𝒍𝐲 𝟐 𝐯𝒂𝐫𝐢𝒂𝐛𝒍𝐞𝐬 
𝐞𝐪𝐮𝒂𝒍 𝐭𝐨 𝐳𝐞𝐫𝐨 𝒂𝐧𝐝 𝐖𝐋𝐎𝐆 𝐰𝐞 𝐦𝒂𝐲 𝒂𝐬𝐬𝐮𝐦𝐞 𝐛 = 𝐜 = 𝟎 (𝒂 > 0), 𝐭𝐡𝐞𝐧 ∶ 𝐋𝐇𝐒 − 𝐑𝐇𝐒 = 
𝟏

(𝟏 + 𝒂)𝟐
+ 𝟐 − 𝟏 > 0 𝑎𝐧𝐝 𝐢𝐟 𝐞𝒙𝒂𝐜𝐭𝒍𝐲 𝟏 𝐯𝒂𝐫𝐢𝒂𝐛𝒍𝐞 𝐞𝐪𝐮𝒂𝒍𝐬 𝐭𝐨 𝐳𝐞𝐫𝐨 𝒂𝐧𝐝 𝐖𝐋𝐎𝐆 𝐰𝐞 𝐦𝒂𝐲 
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𝒂𝐬𝐬𝐮𝐦𝐞 𝒂 = 𝟎 (𝐛, 𝐜 > 0), 𝐭𝐡𝐞𝐧 ∶ 𝐋𝐇𝐒 − 𝐑𝐇𝐒 = 𝟏 +
𝟏

(𝟏 + 𝐛)𝟐
+

𝟏

(𝟏 + 𝐜)𝟐
− 𝟏 > 0 

𝒂𝐧𝐝 𝐰𝐞 𝐧𝐨𝐰 𝐟𝐨𝐜𝐮𝐬 𝐨𝐧 𝐭𝐡𝐞 𝐜𝒂𝐬𝐞 𝐰𝐡𝐞𝐧 ∶ 𝒂, 𝐛, 𝐜 > 0 𝑎𝐧𝐝 𝐭𝐡𝐞𝐧 ∶ 

𝟏

(𝟏 + 𝒂)𝟐
+

𝟏

(𝟏 + 𝐛)𝟐
+

𝟏

(𝟏 + 𝐜)𝟐
+
𝒂𝐛𝐜

𝟒
≥ 𝟏 ⇔ 𝒂𝟑𝐛𝟑𝐜𝟑 + 𝟐𝒂𝟐𝐛𝟐𝐜𝟐 (∑𝒂𝐛

𝐜𝐲𝐜

) + 

𝒂𝐛𝐜(∑𝒂𝟐𝐛𝟐

𝐜𝐲𝐜

) + 𝟒𝒂𝟐𝐛𝟐𝐜𝟐∑𝒂

𝐜𝐲𝐜

+ 𝟐𝒂𝐛𝐜(∑𝒂𝟐𝐛

𝐜𝐲𝐜

+∑𝒂𝐛𝟐

𝐜𝐲𝐜

) + 𝟒𝒂𝟐𝐛𝟐𝐜𝟐 + 

𝒂𝐛𝐜∑𝒂𝟐

𝐜𝐲𝐜

+ 𝟒∑𝒂𝟐

𝐜𝐲𝐜

+ 𝟖∑𝒂

𝐜𝐲𝐜

+ 𝟖 ≥
?
⏟
(∗)

𝟒𝒂𝐛𝐜∑𝒂𝐛

𝐜𝐲𝐜

+ 𝟏𝟒𝒂𝐛𝐜∑𝒂

𝐜𝐲𝐜

+ 𝟑𝟏𝒂𝐛𝐜 

𝒂𝐧𝐝 𝐧𝐨𝐰, 𝟐𝒂𝟐𝐛𝟐𝐜𝟐 (∑𝒂𝐛

𝐜𝐲𝐜

) + 𝟐∑𝒂𝟐

𝐜𝐲𝐜

− 𝟒𝒂𝐛𝐜∑𝒂𝐛

𝐜𝐲𝐜

≥ 𝟐𝒂𝟐𝐛𝟐𝐜𝟐 (∑𝒂𝐛

𝐜𝐲𝐜

) + 

𝟐∑𝒂𝐛

𝐜𝐲𝐜

− 𝟒𝒂𝐛𝐜∑𝒂𝐛

𝐜𝐲𝐜

= 𝟐(∑𝒂𝐛

𝐜𝐲𝐜

) (𝒂𝐛𝐜 − 𝟏)𝟐 ≥ 𝟎 

∴ 𝟐𝒂𝟐𝐛𝟐𝐜𝟐(∑𝒂𝐛

𝐜𝐲𝐜

) + 𝟐∑𝒂𝟐

𝐜𝐲𝐜

≥
①

𝟒𝒂𝐛𝐜∑𝒂𝐛

𝐜𝐲𝐜

 

𝐖𝐞 𝐡𝒂𝐯𝐞 ∶ 𝒂𝐛𝐜(∑𝒂𝟐𝐛𝟐

𝐜𝐲𝐜

) + 𝟒𝒂𝟐𝐛𝟐𝐜𝟐∑𝒂

𝐜𝐲𝐜

+
𝒂𝐛𝐜

𝟒
(∑𝒂𝟐𝐛

𝐜𝐲𝐜

+∑𝒂𝐛𝟐

𝐜𝐲𝐜

) +
𝟏

𝟐
∑𝒂𝟐

𝐜𝐲𝐜

 

+∑(𝒂𝟐𝐛𝟐𝐜𝟐 + 𝒂𝟑𝐛𝐜 + 𝒂)

𝐜𝐲𝐜

+ 𝟓∑𝒂

𝐜𝐲𝐜

− 𝟏𝟒𝒂𝐛𝐜∑𝒂

𝐜𝐲𝐜

≥
𝐀𝐌−𝐆𝐌

𝟓𝒂𝟐𝐛𝟐𝐜𝟐∑𝒂

𝐜𝐲𝐜

+ 

𝟑

𝟐
𝒂𝟐𝐛𝟐𝐜𝟐 +

𝟏

𝟐
∑𝒂𝟐

𝐜𝐲𝐜

+ 𝟑∑𝒂𝟐𝐛𝐜

𝐜𝐲𝐜

+ 𝟓∑𝒂

𝐜𝐲𝐜

− 𝟏𝟒𝒂𝐛𝐜∑𝒂

𝐜𝐲𝐜

≥
𝐀𝐌−𝐆𝐌

𝟓𝒂𝟐𝐛𝟐𝐜𝟐∑𝒂

𝐜𝐲𝐜

+ 

(
𝟏

𝟐
.∑𝟐𝒂𝟐𝐛𝐜

𝐜𝐲𝐜

+ 𝟑∑𝒂𝟐𝐛𝐜

𝐜𝐲𝐜

− 𝟏𝟒𝒂𝐛𝐜∑𝒂

𝐜𝐲𝐜

) + 𝟓∑𝒂

𝐜𝐲𝐜

 

= 𝟓(∑𝒂

𝐜𝐲𝐜

)(𝒂𝟐𝐛𝟐𝐜𝟐 − 𝟐𝒂𝐛𝐜 + 𝟏) = 𝟓(∑𝒂

𝐜𝐲𝐜

)(𝒂𝐛𝐜 − 𝟏)𝟐 ≥ 𝟎 

∴ 𝒂𝐛𝐜(∑𝒂𝟐𝐛𝟐

𝐜𝐲𝐜

) + 𝟒𝒂𝟐𝐛𝟐𝐜𝟐∑𝒂

𝐜𝐲𝐜

+
𝒂𝐛𝐜

𝟒
(∑𝒂𝟐𝐛

𝐜𝐲𝐜

+∑𝒂𝐛𝟐

𝐜𝐲𝐜

) +
𝟏

𝟐
∑𝒂𝟐

𝐜𝐲𝐜

+ 

𝟑𝒂𝟐𝐛𝟐𝐜𝟐 + 𝒂𝐛𝐜∑𝒂𝟐

𝐜𝐲𝐜

+ 𝟔∑𝒂

𝐜𝐲𝐜

≥
②

𝟏𝟒𝒂𝐛𝐜∑𝒂

𝐜𝐲𝐜

∴ ① 𝒂𝐧𝐝 ② ⇒ 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 (∗), 
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𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 𝒂𝟑𝐛𝟑𝐜𝟑 +
𝟕𝒂𝐛𝐜

𝟒
(∑𝒂𝟐𝐛

𝐜𝐲𝐜

+∑𝒂𝐛𝟐

𝐜𝐲𝐜

) + 𝒂𝟐𝐛𝟐𝐜𝟐 +
𝟑

𝟐
∑𝒂𝟐

𝐜𝐲𝐜

+ 

𝟐∑𝒂

𝐜𝐲𝐜

+ 𝟖 − 𝟑𝟏𝒂𝐛𝐜 ≥
?
⏟
(∗∗)

𝟎 𝒂𝐧𝐝 𝐢𝐧𝐝𝐞𝐞𝐝, 𝐋𝐇𝐒 𝐨𝐟 (∗∗) ≥
𝐀𝐌−𝐆𝐌

 

𝐭𝟗 +
𝟐𝟏

𝟐
𝐭𝟔 + 𝐭𝟔 +

𝟗

𝟐
𝐭𝟐 + 𝟔𝐭 + 𝟖 − 𝟑𝟏𝐭𝟑 (𝐭 = √𝒂𝐛𝐜

𝟑
) 

=
(𝐭 − 𝟏)𝟐

𝟐
. (𝟐𝐭𝟕 + 𝟒𝐭𝟔 + 𝟔𝐭𝟓 + 𝟑𝟏𝐭𝟒 + 𝟓𝟔𝐭𝟑 + 𝟖𝟏𝐭𝟐 + 𝟒𝟒𝐭 + 𝟏𝟔) ≥ 𝟎 (∵ 𝐭 > 0) 

⇒ (∗∗) ⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 ∴
𝟏

(𝟏 + 𝒂)𝟐
+

𝟏

(𝟏 + 𝐛)𝟐
+

𝟏

(𝟏 + 𝐜)𝟐
+
𝒂𝐛𝐜

𝟒
≥ 𝟏 ∀ 𝒂, 𝐛, 𝐜 ≥ 𝟎, 

′′ = ′′ 𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 = 𝟏 (𝐐𝐄𝐃) 
 

2030. If 𝒂, 𝒃, 𝒄 > 0, 𝑎 + 𝑏 + 𝑐 = 1  then: 
𝟑𝒂

𝟒 − 𝟑𝒂
+

𝟑𝒃

𝟒 − 𝟑𝒃
+

𝟑𝒄

𝟒 − 𝟑𝒄
+ 𝒂𝟒 + 𝒃𝟒 + 𝒄𝟒 ≥ 𝒂 + 𝒃 + 𝒄 + 𝒂𝒃𝒄 

Proposed by Gheorghe Crăciun-Romania 
Solution by Mirsadix Muzefferov-Azerbaijan 

𝑳𝑯𝑺 (𝒑𝒂𝒓𝒕 − 𝟏) ∶ (
𝟑𝒂

𝟒 − 𝟑𝒂
+ 𝟏) + ( 

𝟑𝒃

𝟒 − 𝟑𝒃
+ 𝟏) + (

𝟑𝒄

𝟒 − 𝟑𝒄
+ 𝟏) 

𝟒

𝟒 − 𝟑𝒂
+

𝟒

𝟒 − 𝟑𝒃
+

𝟒

𝟒 − 𝟑𝒄
≥⏞

𝑩𝒆𝒓𝒈𝒔𝒕𝒓𝒐𝒎
(𝟐 + 𝟐 + 𝟐)𝟐

𝟏𝟐 − 𝟑(𝒂 + 𝒃 + 𝒄)
=
𝟑𝟔

𝟗
= 𝟒 

𝟑𝒂

𝟒 − 𝟑𝒂
+

𝟑𝒃

𝟒 − 𝟑𝒃
+

𝟑𝒄

𝟒 − 𝟑𝒄
≥ 𝟒 − 𝟑 = 𝟏 = 𝒂 + 𝒃 + 𝒄 (∗) 

𝑳𝑯𝑺 (𝒑𝒂𝒓𝒕 − 𝟐) 𝒂𝟒 + 𝒃𝟒 + 𝒄𝟒 ≥⏞
𝑪𝒉𝒆𝒃𝒚𝒔𝒉𝒆𝒗

𝟏

𝟑
(𝒂 + 𝒃 + 𝒄)(𝒂𝟑 + 𝒃𝟑 + 𝒄𝟑) = 

𝟏

𝟑
(𝒂𝟑 + 𝒃𝟑 + 𝒄𝟑) ≥⏞

𝑨−𝑮𝟏

𝟑
. 𝟑𝒂𝒃𝒄 = 𝒂𝒃𝒄 

𝒂𝟒 + 𝒃𝟒 + 𝒄𝟒 ≥ 𝒂𝒃𝒄   (∗∗) 
𝑭𝒓𝒐𝒎  (∗)  𝒂𝒏𝒅 (∗∗)  𝒘𝒆  𝒈𝒆𝒕 ∶ 

𝟑𝒂

𝟒 − 𝟑𝒂
+

𝟑𝒃

𝟒 − 𝟑𝒃
+

𝟑𝒄

𝟒 − 𝟑𝒄
+ 𝒂𝟒 + 𝒃𝟒 + 𝒄𝟒 ≥ 𝒂 + 𝒃 + 𝒄 + 𝒂𝒃𝒄 . 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚  𝒉𝒐𝒍𝒅𝒔  𝒇𝒐𝒓 ∶ 𝒂 = 𝒃 = 𝒄 =
𝟏

𝟑
. 

2031.  𝐈𝐟 𝒂, 𝐛, 𝐜 > 𝟎, 𝒂 + 𝐛 + 𝐜 = 𝟑 𝒂𝐧𝐝 𝛌 ≥ 𝟓, 𝐭𝐡𝐞𝐧 ∶ 

∑𝒂𝟐𝐛𝟐

𝐜𝐲𝐜

+ 𝛌∑𝒂𝐛

𝐜𝐲𝐜

≤ 𝟑(𝛌 + 𝟏) 

  Proposed by Marin Chirciu-Romania 
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Solution by Soumava Chakraborty-Kolkata-India 

∑𝒂𝟐𝐛𝟐

𝐜𝐲𝐜

+ 𝛌∑𝒂𝐛

𝐜𝐲𝐜

≤ 𝟑(𝛌 + 𝟏) ⇔∑𝒂𝟐𝐛𝟐

𝐜𝐲𝐜

+
𝛌

𝟗
(∑𝒂𝐛

𝐜𝐲𝐜

)(∑𝒂

𝐜𝐲𝐜

)

𝟐

≤ 

𝟑(𝛌 + 𝟏)

𝟖𝟏
(∑𝒂

𝐜𝐲𝐜

)

𝟒

 (∵∑𝒂

𝐜𝐲𝐜

= 𝟑) 

⇔ 𝛌(∑𝒂

𝐜𝐲𝐜

)

𝟐

((∑𝒂

𝐜𝐲𝐜

)

𝟐

− 𝟑∑𝒂𝐛

𝐜𝐲𝐜

) +(∑𝒂

𝐜𝐲𝐜

)

𝟒

− 𝟐𝟕∑𝒂𝟐𝐛𝟐

𝐜𝐲𝐜

≥ 𝟎 𝒂𝐧𝐝 

∵ 𝛌 ≥ 𝟓 ∧ (∑𝒂

𝐜𝐲𝐜

)

𝟐

− 𝟑∑𝒂𝐛

𝐜𝐲𝐜

≥ 𝟎 ∴ 𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 

𝟓 (∑𝒂

𝐜𝐲𝐜

)

𝟐

((∑𝒂

𝐜𝐲𝐜

)

𝟐

− 𝟑∑𝒂𝐛

𝐜𝐲𝐜

)+ (∑𝒂

𝐜𝐲𝐜

)

𝟒

− 𝟐𝟕∑𝒂𝟐𝐛𝟐

𝐜𝐲𝐜

≥
?
𝟎 

⇔ 𝟐∑𝒂𝟒

𝐜𝐲𝐜

+ 𝟑∑𝒂𝟑𝐛

𝐜𝐲𝐜

+ 𝟑∑𝒂𝐛𝟑

𝐜𝐲𝐜

≥
?
𝟕∑𝒂𝟐𝐛𝟐

𝐜𝐲𝐜

+ 𝒂𝐛𝐜∑𝒂

𝐜𝐲𝐜

→ 𝐭𝐫𝐮𝐞 

∵ 𝟐∑𝒂𝟒

𝐜𝐲𝐜

+ 𝟑∑𝒂𝟑𝐛

𝐜𝐲𝐜

+ 𝟑∑𝒂𝐛𝟑

𝐜𝐲𝐜

≥
𝐀𝐌−𝐆𝐌

𝟐∑𝒂𝟐𝐛𝟐

𝐜𝐲𝐜

+ 𝟔∑𝒂𝟐𝐛𝟐

𝐜𝐲𝐜

 

≥ ∑𝒂𝟐𝐛𝟐

𝐜𝐲𝐜

+ 𝒂𝐛𝐜∑𝒂

𝐜𝐲𝐜

+ 𝟔∑𝒂𝟐𝐛𝟐

𝐜𝐲𝐜

= 𝟕∑𝒂𝟐𝐛𝟐

𝐜𝐲𝐜

+ 𝒂𝐛𝐜∑𝒂

𝐜𝐲𝐜

 𝒂𝐧𝐝 𝐬𝐨, 

∑𝒂𝟐𝐛𝟐

𝐜𝐲𝐜

+ 𝛌∑𝒂𝐛

𝐜𝐲𝐜

≤ 𝟑(𝛌 + 𝟏) ∀ 𝒂, 𝐛, 𝐜 > 𝟎│ 𝒂 + 𝐛 + 𝐜 = 𝟑 𝒂𝐧𝐝 𝛌 ≥ 𝟓, 

′′ =′′  𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 = 𝟏 (𝐐𝐄𝐃) 
 

2032. If √𝒙𝟐 + 𝟏 + √𝒚𝟐 + 𝟏 + 𝒙 + 𝒚 = 𝟐√𝟐 + 𝟐 then: 
 

𝒙√𝒚𝟐 + 𝟏 + 𝒚√𝒙𝟐 + 𝟏 ≤ 𝟐√𝟐 
 

Proposed by Nguyen Hung Cuong-Vietnam 
Solution by Tapas Das-India 
 

𝑳𝒆𝒕 𝒖 = √𝒙𝟐 + 𝟏 + 𝒙, 𝒗 = √𝒚𝟐 + 𝟏 + 𝒚 𝒕𝒉𝒆𝒏 𝒖 + 𝒗 = 𝟐√𝟐 + 𝟐 = 𝟐(√𝟐 + 𝟏) (𝟏) 
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𝒖 = √𝒙𝟐 + 𝟏 + 𝒙,
𝟏

𝒖
= √𝒙𝟐 + 𝟏 − 𝒙 𝒕𝒉𝒆𝒏 𝒖 −

𝟏

𝒖
= 𝟐𝒙 𝒐𝒓 𝒙 =

𝒖𝟐 − 𝟏

𝟐𝒖
 𝒂𝒏𝒅 

 √𝒙𝟐 + 𝟏 = 𝒖 − 𝒙 =
𝒖𝟐 + 𝟏

𝟐𝒖
  

𝑺𝒊𝒎𝒊𝒍𝒂𝒓𝒍𝒚:  𝒚 =  
𝒗𝟐 − 𝟏

𝟐𝒗
,√𝒚𝟐 + 𝟏 =

𝒗𝟐 + 𝟏

𝟐𝒗
 

𝒙√𝒚𝟐 + 𝟏 + 𝒚√𝒙𝟐 + 𝟏 =
𝒖𝟐 − 𝟏

𝟐𝒖
.
𝒗𝟐 + 𝟏

𝟐𝒗
+
𝒗𝟐 − 𝟏

𝟐𝒗
.
𝒖𝟐 + 𝟏

𝟐𝒖
=
𝒖𝟐𝒗𝟐 − 𝟏

𝟐𝒖𝒗
 (𝟐) 

𝒖𝒗 ≤
𝑨𝑴−𝑮𝑴

 (
𝒖 + 𝒗

𝟐
)
𝟐

=
(𝟏)
 (
𝟐(√𝟐 + 𝟏)

𝟐
)

𝟐

= 𝟑 + 𝟐√𝟐 (𝟑) 

𝑾𝒆 𝒏𝒆𝒆𝒅 𝒕𝒐 𝒔𝒉𝒐𝒘: 

 𝒙√𝒚𝟐 + 𝟏 + 𝒚√𝒙𝟐 + 𝟏 ≤ 𝟐√𝟐 

𝒐𝒓  
𝒖𝟐𝒗𝟐 − 𝟏

𝟐𝒖𝒗
≤ 𝟐√𝟐  𝒐𝒓 𝒖𝟐𝒗𝟐 − 𝟒√𝟐𝒖𝒗 − 𝟏 ≤ 𝟎 

𝒐𝒓 (𝒖𝒗 − (𝟐√𝟐 + 𝟑))(𝒖𝒗 − (𝟐√𝟐 − 𝟑)) ≤ 𝟎   

𝒘𝒉𝒊𝒄𝒉 𝒊𝒎𝒑𝒍𝒊𝒆𝒔 𝟐√𝟐 − 𝟑 ≤  𝒖𝒗 ≤  𝟐√𝟐 + 𝟑 𝒕𝒉𝒊𝒔 𝒊𝒔 𝒕𝒓𝒖𝒆 𝒃𝒚 (𝟑) 
 

Equality  holds  for  x=y=1. 
 

2033. If √𝒙𝟐 + 𝟏 + √𝒚𝟐 + 𝟏 − 𝒙 − 𝒚 = 𝟐√𝟐 − 𝟐 then: 
 

√(𝒙𝟐 + 𝟏)(𝒚𝟐 + 𝟏) + 𝒙𝒚 ≥ 𝟑 
 

Proposed by Nguyen Hung Cuong-Vietnam 
Solution by Tapas Das-India 
 

𝑳𝒆𝒕 𝒂 = √𝒙𝟐 + 𝟏 − 𝒙, 𝒃 = √𝒚𝟐 + 𝟏 − 𝒚   
𝟏

𝒂
=

𝟏

√𝒙𝟐 + 𝟏 − 𝒙
= √𝒙𝟐 + 𝟏 + 𝒙  𝒕𝒉𝒆𝒏 𝒂 −

𝟏

𝒂
= −𝟐𝒙 𝒐𝒓 𝒙 =

𝟏 − 𝒂𝟐

𝟐𝒂
 

√𝒙𝟐 + 𝟏 = 𝒙 + 𝒂 =
𝟏 − 𝒂𝟐

𝟐𝒂
+ 𝒂 =

𝟏 + 𝒂𝟐

𝟐𝒂
  

 

𝑺𝒊𝒎𝒊𝒍𝒂𝒓𝒚:  𝒚 =
𝟏 − 𝒃𝟐

𝟐𝒃
, √𝒚𝟐 + 𝟏 =

𝟏 + 𝒃𝟐

𝟐𝒃
 

 

√(𝒙𝟐 + 𝟏)(𝒚𝟐 + 𝟏) + 𝒙𝒚 =
𝟏 + 𝒂𝟐

𝟐𝒂
.
𝟏 + 𝒃𝟐

𝟐𝒃
+
𝟏 − 𝒂𝟐

𝟐𝒂

𝟏 − 𝒃𝟐

𝟐𝒃
=
𝟏 + 𝒂𝟐𝒃𝟐

𝟐𝒂𝒃
(𝟏) 
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√𝒙𝟐 + 𝟏 +√𝒚𝟐 + 𝟏 − 𝒙 − 𝒚 = 𝟐√𝟐 − 𝟐  𝒐𝒓 𝒂 + 𝒃 = 𝟐(√𝟐 − 𝟏) 

𝒂𝒃 ≤
𝑨𝑴−𝑮𝑴

 (
𝒂 + 𝒃

𝟐
)
𝟐

= (
𝟐(√𝟐 − 𝟏)

𝟐
)

𝟐

= 𝟑 − 𝟐√𝟐  𝒐𝒓  𝟐√𝟐 ≤ 𝟑 − 𝒂𝒃  

𝒐𝒓, (𝟐√𝟐)
𝟐
≤ (𝟑 − 𝒂𝒃)𝟐 𝒐𝒓  𝟖 ≤ 𝟗 − 𝟔𝒂𝒃 + 𝒂𝟐𝒃𝟐 𝒐𝒓  𝒂𝟐𝒃𝟐 − 𝟔𝒂𝒃 + 𝟏 ≥ 𝟎 (𝟐) 

 

𝑾𝒆 𝒏𝒆𝒆𝒅 𝒕𝒐 𝒔𝒉𝒐𝒘: √(𝒙𝟐 + 𝟏)(𝒚𝟐 + 𝟏) + 𝒙𝒚 ≥ 𝟑 

 𝒐𝒓 
𝟏 + 𝒂𝟐𝒃𝟐

𝟐𝒂𝒃
≥ 𝟑 (𝒖𝒔𝒊𝒏𝒈 (𝟏)) 𝒐𝒓 𝒂𝟐𝒃𝟐 − 𝟔𝒂𝒃 + 𝟏 ≥ 𝟎  𝒕𝒉𝒊𝒔 𝒊𝒔 𝒕𝒓𝒖𝒆 𝒃𝒚 (𝟐) 

 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒇𝒐𝒓 𝒂 = 𝒃 = √𝟐 − 𝟏 𝒐𝒓 𝒙 = 𝒚 = 𝟏. 
 

2034. If 𝒙, 𝒚 ∈ (𝟎, 𝝅] then: 
𝟐

(𝐬𝐢𝐧𝟐 𝒙 − 𝐬𝐢𝐧 𝒙 + 𝟏)(𝐬𝐢𝐧𝟐 𝒚 − 𝐬𝐢𝐧 𝒚 + 𝟏)
≤ 𝟏 +

𝟏

𝐬𝐢𝐧𝟐 𝒙 𝐬𝐢𝐧𝟐 𝒚
 

 
Proposed by Dang Ngoc Minh-Vietnam 

Solution by Tapas Das-India 

𝐬𝐢𝐧𝟐 𝒙 − 𝐬𝐢𝐧𝒙 + 𝟏 = (𝐬𝐢𝐧𝟐 𝒙 + 𝟏) − 𝐬𝐢𝐧𝒙 ≥
𝑨𝑴−𝑮𝑴

𝟐 𝐬𝐢𝐧 𝒙 − 𝐬𝐢𝐧 𝒙 = 𝐬𝐢𝐧𝒙 
 

 𝑺𝒊𝒎𝒊𝒍𝒂𝒓𝒍𝒚: 
 𝐬𝐢𝐧𝟐 𝒚 − 𝐬𝐢𝐧 𝒚 + 𝟏 ≥ 𝐬𝐢𝐧𝒚  𝒕𝒉𝒆𝒏 (𝐬𝐢𝐧𝟐 𝒙 − 𝐬𝐢𝐧𝒙 + 𝟏)(𝐬𝐢𝐧𝟐 𝒚 − 𝐬𝐢𝐧 𝒚 + 𝟏) ≥ 𝐬𝐢𝐧𝒙 𝐬𝐢𝐧 𝒚 
 

𝑾𝒆 𝒏𝒆𝒆𝒅 𝒕𝒐 𝒔𝒉𝒐𝒘: 

 
𝟐

(𝐬𝐢𝐧𝟐 𝒙 − 𝐬𝐢𝐧 𝒙 + 𝟏)(𝐬𝐢𝐧𝟐 𝒚 − 𝐬𝐢𝐧𝒚 + 𝟏)
≤ 𝟏 +

𝟏

𝐬𝐢𝐧𝟐 𝒙 𝐬𝐢𝐧𝟐 𝒚
  

𝟐

𝐬𝐢𝐧𝒙 𝐬𝐢𝐧 𝒚
≤ 𝟏 +

𝟏

𝐬𝐢𝐧𝟐 𝒙 𝐬𝐢𝐧𝟐 𝒚
   

𝟏 +
𝟏

𝐬𝐢𝐧𝟐 𝒙 𝐬𝐢𝐧𝟐 𝒚
−

𝟐

𝐬𝐢𝐧𝒙 𝐬𝐢𝐧𝒚
≥ 𝟎  

(𝟏 −
𝟏

𝐬𝐢𝐧 𝒙 𝐬𝐢𝐧𝒚
)
𝟐

≥ 𝟎 𝒕𝒓𝒖𝒆  

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒇𝒐𝒓 𝒙 = 𝒚 =
𝝅

𝟐
. 

2035. 

𝐅𝐨𝐫 𝒂, 𝐛 ≥ 𝟎 𝐩𝐫𝐨𝐯𝐞 𝐭𝐡𝒂𝐭 ∶ 

𝟏

(𝒂𝟐 + 𝒂 + 𝟏)𝟐
+

𝟏

(𝐛𝟐 + 𝐛 + 𝟏)𝟐
≤ 𝟏 +

𝟐

(𝒂 + 𝟏)𝟒 + (𝐛 + 𝟏)𝟒
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  Proposed by Dang Ngoc Minh-Vietnam 

Solution by Soumava Chakraborty-Kolkata-India 

𝟏

(𝒂𝟐 + 𝒂 + 𝟏)𝟐
+

𝟏

(𝐛𝟐 + 𝐛 + 𝟏)𝟐
=

𝟐

𝟏 + (𝒂 + 𝟏)𝟒 + 𝒂𝟒
+

𝟐

𝟏 + (𝐛 + 𝟏)𝟒 + 𝐛𝟒
≤ 

𝟐

𝟏 + (𝒂 + 𝟏)𝟒
+

𝟐

𝟏 + (𝐛 + 𝟏)𝟒
≤
?
𝟏 +

𝟐

(𝒂 + 𝟏)𝟒 + (𝐛 + 𝟏)𝟒
 

⇔
𝟐

𝟏 + (𝟏 + 𝒙)
+

𝟐

𝟏 + (𝟏 + 𝐲)
≤
?
𝟏 +

𝟐

(𝒙 + 𝟏) + (𝐲 + 𝟏)
 

(
∵ (𝒂 + 𝟏)𝟒 ≥ 𝟏 ∴ 𝐰𝐞 𝐜𝒂𝐧 𝐬𝐞𝐭 ∶ (𝒂 + 𝟏)𝟒 = 𝟏 + 𝒙 𝐰𝐢𝐭𝐡 𝒙 ≥ 𝟎

𝒂𝐧𝐝 𝐬𝐢𝐦𝐢𝒍𝒂𝐫𝒍𝐲,𝐰𝐞 𝐜𝒂𝐧 𝐬𝐞𝐭 ∶  (𝐛 + 𝟏)𝟒 = 𝟏 + 𝐲 𝐰𝐢𝐭𝐡 𝐲 ≥ 𝟎
) 

⇔
𝟐(𝟒 + 𝒙 + 𝐲)

(𝟐 + 𝒙)(𝟐 + 𝐲)
≤
? 𝟒 + 𝒙 + 𝐲

𝟐 + 𝒙 + 𝐲
⇔ 𝟒 + 𝒙𝐲 + 𝟐𝒙 + 𝟐𝐲 ≥

?
𝟒 + 𝟐𝒙 + 𝟐𝐲 ⇔ 𝒙𝐲 ≥

?
𝟎 

→ 𝐭𝐫𝐮𝐞 ∴
𝟏

(𝒂𝟐 + 𝒂 + 𝟏)𝟐
+

𝟏

(𝐛𝟐 + 𝐛 + 𝟏)𝟐
≤ 𝟏 +

𝟐

(𝒂 + 𝟏)𝟒 + (𝐛 + 𝟏)𝟒
 ∀ 𝒂, 𝐛 ≥ 𝟎, 

′′ =′′ 𝐢𝐟𝐟 𝒂 = 𝐛 = 𝟎 (𝐐𝐄𝐃) 
 

2036. 𝐈𝐟 𝒙, 𝐲, 𝐳 > 0, 𝑥 + 𝐲 + 𝐳 = 𝟑 𝒂𝐧𝐝 𝛌 ≥ 𝟑 𝐭𝐡𝐞𝐧 ∶ 

∑𝒙𝟑𝐲

𝐜𝐲𝐜

+ 𝟑(𝛌 − 𝟏) ≥ 𝛌∑𝒙𝐲

𝐜𝐲𝐜

 

  Proposed by Marin Chirciu-Romania 

Solution by Soumava Chakraborty-Kolkata-India 

𝐀𝐬𝐬𝐢𝐠𝐧𝐢𝐧𝐠 𝐲 + 𝐳 = 𝒂, 𝐳 + 𝒙 = 𝐛, 𝒙 + 𝐲 = 𝐜 ⇒ 𝒂 + 𝐛 − 𝐜 = 𝟐𝐳 > 0, 𝑏 + 𝑐 − 𝑎 
= 𝟐𝒙 > 𝟎 𝒂𝐧𝐝 𝐜 + 𝒂 − 𝐛 = 𝟐𝐲 > 0 ⇒ 𝑎 + 𝐛 > 𝑐, 𝐛 + 𝐜 > 𝒂, 𝐜 + 𝒂 > 𝒃 ⇒ 𝒂, 𝐛, 𝐜 
𝐟𝐨𝐫𝐦 𝐬𝐢𝐝𝐞𝐬 𝐨𝐟 𝒂 𝐭𝐫𝐢𝒂𝐧𝐠𝐥𝐞 𝐰𝐢𝐭𝐡 𝐬𝐞𝐦𝐢𝐩𝐞𝐫𝐢𝐦𝐞𝐭𝐞𝐫, 𝐜𝐢𝐫𝐜𝐮𝐦𝐫𝒂𝐝𝐢𝐮𝐬 𝒂𝐧𝐝 𝐢𝐧𝐫𝒂𝐝𝐢𝐮𝐬 

= 𝐬,𝐑, 𝐫 (𝐬𝒂𝐲) ⇒∑𝒙

𝐜𝐲𝐜

= 𝐬,∑𝒙𝐲

𝐜𝐲𝐜

= 𝟒𝐑𝐫 + 𝐫𝟐 𝒂𝐧𝐝 ∑𝒙𝟑𝐲

𝐜𝐲𝐜

+ 𝟑(𝛌 − 𝟏) − 𝛌∑𝒙𝐲

𝐜𝐲𝐜

 

=
𝒙+𝐲+𝐳 = 𝟑

∑
𝒙𝟑𝐲𝟑

𝐲𝟐
𝐜𝐲𝐜

+
𝟑(𝛌 − 𝟏)

𝟖𝟏
. (∑𝒙

𝐜𝐲𝐜

)

𝟒

−
𝛌

𝟗
(∑𝒙𝐲

𝐜𝐲𝐜

)(∑𝒙

𝐜𝐲𝐜

)

𝟐

 

≥
𝐑𝒂𝐝𝐨𝐧 (∑ 𝒙𝐲𝐜𝐲𝐜 )

𝟑

(∑ 𝒙𝐜𝐲𝐜 )
𝟐 +

𝛌

𝟐𝟕
(∑𝒙

𝐜𝐲𝐜

)

𝟐

. ((∑𝒙

𝐜𝐲𝐜

)

𝟐

− 𝟑∑𝒙𝐲

𝐜𝐲𝐜

) −
𝟏

𝟐𝟕
. (∑𝒙

𝐜𝐲𝐜

)

𝟒

 

≥
𝛌 ≥ 𝟑 (∑ 𝒙𝐲𝐜𝐲𝐜 )

𝟑

(∑ 𝒙𝐜𝐲𝐜 )
𝟐 +

𝟏

𝟗
(∑𝒙

𝐜𝐲𝐜

)

𝟐

. ((∑𝒙

𝐜𝐲𝐜

)

𝟐

− 𝟑∑𝒙𝐲

𝐜𝐲𝐜

)−
𝟏

𝟐𝟕
. (∑𝒙

𝐜𝐲𝐜

)

𝟒
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(∵ (∑𝒙

𝐜𝐲𝐜

)

𝟐

≥ 𝟑∑𝒙𝐲

𝐜𝐲𝐜

) ≥
?
𝟎 ⇔ 

𝟐𝟕(∑𝒙𝐲

𝐜𝐲𝐜

)

𝟑

+ 𝟑(∑𝒙

𝐜𝐲𝐜

)

𝟒

. ((∑𝒙

𝐜𝐲𝐜

)

𝟐

− 𝟑∑𝒙𝐲

𝐜𝐲𝐜

)− (∑𝒙

𝐜𝐲𝐜

)

𝟔

≥
?
𝟎 ⇔

𝐯𝐢𝒂
𝐭𝐫𝒂𝐧𝐬𝐟𝐨𝐫𝐦𝒂𝐭𝐢𝐨𝐧

 

𝟐𝐬𝟔 − 𝟗(𝟒𝐑𝐫 + 𝐫𝟐)𝐬𝟒 + 𝟐𝟕(𝟒𝐑𝐫 + 𝐫𝟐)𝟑 ≥
?
⏟
(∗)

𝟎 𝒂𝐧𝐝 ∵ 𝟐(𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐)𝟑 ≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

𝟎 

∴ 𝐢𝐧 𝐨𝐫𝐝𝐞𝐫 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 (∗), 𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 𝐋𝐇𝐒 𝐨𝐟 (∗) ≥
?
𝟐(𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐)𝟑 

⇔ (𝟔𝟎𝐑− 𝟑𝟗𝐫)𝐬𝟒 − 𝐫(𝟏𝟓𝟑𝟔𝐑𝟐 − 𝟗𝟔𝟎𝐑𝐫 + 𝟏𝟓𝟎𝐫𝟐)𝐬𝟐 + 

𝐫𝟐(𝟗𝟗𝟐𝟎𝐑𝟑 − 𝟔𝟑𝟖𝟒𝐑𝟐𝐫 + 𝟐𝟕𝟐𝟒𝐑𝐫𝟐 − 𝟐𝟐𝟑𝐫𝟑) ≥
?
⏟
(∗∗)

𝟎 𝒂𝐧𝐝 

∵ (𝟔𝟎𝐑 − 𝟑𝟗𝐫)(𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐)𝟐 ≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

𝟎 ∴ 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 (∗∗), 𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞  

: 𝐋𝐇𝐒 𝐨𝐟 (∗∗) ≥
?
(𝟔𝟎𝐑− 𝟑𝟗𝐫)(𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐)𝟐 

⇔ (𝟒𝟖𝐑𝟐 − 𝟏𝟏𝟏𝐑𝐫 + 𝟑𝟎𝐫𝟐)𝐬𝟐 ≥
?
⏟
(∗∗∗)

𝐫(𝟔𝟖𝟎𝐑𝟑 − 𝟏𝟔𝟓𝟎𝐑𝟐𝐫 + 𝟔𝟐𝟕𝐑𝐫𝟐 − 𝟗𝟒𝐫𝟑) 𝒂𝐧𝐝  

𝐟𝐢𝐧𝒂𝒍𝒍𝐲, (𝟒𝟖𝐑𝟐 − 𝟏𝟏𝟏𝐑𝐫 + 𝟑𝟎𝐫𝟐)𝐬𝟐 ≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

(𝟒𝟖𝐑𝟐 − 𝟏𝟏𝟏𝐑𝐫 + 𝟑𝟎𝐫𝟐)(𝟏𝟔𝐑𝐫 − 𝟓𝐫𝟐) 

≥
?
𝐑𝐇𝐒 𝐨𝐟 (∗∗∗) ⇔ 𝟒𝟒𝐭𝟑 − 𝟏𝟖𝟑𝐭𝟐 + 𝟐𝟎𝟒𝐭 − 𝟐𝟖 ≥

?
𝟎 (𝐭 =

𝐑

𝐫
) 

⇔ (𝐭 − 𝟐)𝟐(𝟒𝟒𝐭 − 𝟕) ≥
?
𝟎 → 𝐭𝐫𝐮𝐞 ∵ 𝐭 ≥

𝐄𝐮𝐥𝐞𝐫
𝟐 ⇒ (∗∗∗) ⇒ (∗∗) ⇒ (∗∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 

∴ ∑𝒙𝟑𝐲

𝐜𝐲𝐜

+ 𝟑(𝛌 − 𝟏) ≥ 𝛌∑𝒙𝐲

𝐜𝐲𝐜

 ∀ 𝒙, 𝐲, 𝐳 > 0│𝑥 + 𝐲 + 𝐳 = 𝟑 𝒂𝐧𝐝 𝛌 ≥ 𝟑, 

′′ =′′  𝐢𝐟𝐟  𝒙 = 𝐲 = 𝐳 = 𝟏 (𝐐𝐄𝐃) 
 

2037. If 𝒂, 𝒃, 𝒄, 𝒅 > 0,
𝟏

𝒂+𝟑
+

𝟏

𝒃+𝟑
+

𝟏

𝒄+𝟑
+

𝟏

𝒅+𝟑
= 𝟏 then: 

 

√𝒂𝒃 + √𝒂𝒄 + √𝒂𝒅 + √𝒃𝒄 + √𝒃𝒅 + √𝒄𝒅 ≤ 𝟔   
 

Proposed by Nguyen Hung Cuong-Vietnam 
Solution by Tapas Das-India 
 

𝑳𝒆𝒕 𝒙𝟏 = √𝒂, 𝒙𝟐 = √𝒃,  𝒙𝟑 = √𝒄, 𝒙𝟒 = √𝒅 
 

√𝒂𝒃 + √𝒂𝒄 + √𝒂𝒅 + √𝒃𝒄 + √𝒃𝒅 + √𝒄𝒅 = 𝒙𝟏𝒙𝟐 + 𝒙𝟏𝒙𝟑 + 𝒙𝟏𝒙𝟒 + 𝒙𝟐𝒙𝟑 + 𝒙𝟐𝒙𝟒 + 𝒙𝟑𝒙𝟒 
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𝑮𝒊𝒗𝒆𝒏 
𝟏

𝒂 + 𝟑
+

𝟏

𝒃 + 𝟑
+

𝟏

𝒄 + 𝟑
+

𝟏

𝒅 + 𝟑
= 𝟏 𝒐𝒓 ∑

𝟏

𝒂 + 𝟑
=∑

𝟏

𝒙𝟏
𝟐 + 𝟑

= 𝟏 

 

∑
𝒙𝟏
𝟐

𝒙𝟏
𝟐 + 𝟑

=∑(𝟏 −
𝟑

𝒙𝟏
𝟐 + 𝟑

) = 𝟒 − 𝟑∑
𝟏

𝒙𝟏
𝟐 + 𝟑

= 𝟒 − 𝟑 × 𝟏 = 𝟏 

(∑𝒙𝟏)
𝟐

=

(

 ∑
𝒙𝟏

√𝒙𝟏
𝟐 + 𝟑

.√𝒙𝟏
𝟐 + 𝟑 

)

 

𝟐

≤
𝑪𝒂𝒖𝒄𝒉𝒚−𝑺𝒄𝒉𝒘𝒂𝒓𝒛

 ∑
𝒙𝟏
𝟐

𝒙𝟏
𝟐 + 𝟑

.∑(𝒙𝟏
𝟐 + 𝟑) 

𝒐𝒓 (∑𝒙𝟏)
𝟐

≤ 𝟏 × (𝟑 × 𝟒 +∑𝒙𝟏
𝟐)  𝒐𝒓 (∑𝒙𝟏)

𝟐

−∑𝒙𝟏
𝟐 ≤ 𝟏𝟐 

 

∑𝒙𝟏𝒙𝟐 =
𝟏

𝟐
((∑𝒙𝟏)

𝟐

−∑𝒙𝟏
𝟐) ≤

𝟏

𝟐
× 𝟏𝟐 = 𝟔 

 

√𝒂𝒃 + √𝒂𝒄 + √𝒂𝒅 + √𝒃𝒄 + √𝒃𝒅 + √𝒄𝒅 = 
= 𝒙𝟏𝒙𝟐 + 𝒙𝟏𝒙𝟑 + 𝒙𝟏𝒙𝟒 + 𝒙𝟐𝒙𝟑 + 𝒙𝟐𝒙𝟒 + 𝒙𝟑𝒙𝟒 ≤ 𝟔 

 
Equality holds for  a=b=c=d=1. 

 

2038. If 𝒙, 𝒚, 𝒛 > 0, 𝑥 + 𝑦 + 𝑧 + 2 = 𝑥𝑦𝑧 

𝟏

√𝒙 + 𝟒
+

𝟏

√𝒚 + 𝟒
+

𝟏

√𝒛 + 𝟒
≤ √

𝟑

𝟐
 

 
Proposed by Nguyen Hung Cuong-Vietnam 

Solution by Tapas Das-India 
 

𝒙 + 𝒚 + 𝒛 + 𝟐 = 𝒙𝒚𝒛  𝒄𝒂𝒏 𝒃𝒆 𝒘𝒓𝒊𝒕𝒕𝒆𝒏 𝒂𝒔
𝟏

𝒙 + 𝟏
+

𝟏

𝒚 + 𝟏
+

𝟏

𝒛 + 𝟏
= 𝟏 

 

𝟏

√𝒙 + 𝟒
+

𝟏

√𝒚 + 𝟒
+

𝟏

√𝒛 + 𝟒
≤
𝑪𝑩𝑺

 √𝟑 (
𝟏

𝒙 + 𝟒
+

𝟏

𝒚 + 𝟒
+

𝟏

𝒛 + 𝟒
 ) ≤ 

 

= √𝟑 (
𝟏

(𝒙 + 𝟏) + 𝟑
+

𝟏

(𝒚 + 𝟏) + 𝟑
+

𝟏

(𝒛 + 𝟏) + 𝟑 
 ) = √𝟑∑

𝟏

(𝒙 + 𝟏) + 𝟑
≤

𝑨𝑴−𝑯𝑴
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≤ √
𝟑

𝟒
∑(

𝟏

𝒙+ 𝟏
+
𝟏

𝟑
) = √

𝟑

𝟒
(∑

𝟏

𝒙 + 𝟏
+∑

𝟏

𝟑
) = √

𝟑

𝟒
(𝟏 + 𝟏) = √

𝟑

𝟐
  

 
Equality holds for  x=y=z=1. 

 
2039. If 𝒂, 𝒃, 𝒄 > 0, 𝑎 + 𝑏 + 𝑐 = 3 then: 
 

∑
𝒂𝟑

𝒂𝟐 + 𝒃𝟐
≥
𝟑

𝟐
 

 
Proposed by Nguyen Hung Cuong-Vietnam 

Solution by Tapas Das-India 
 

 ∑
𝒂𝟑

𝒂𝟐 + 𝒃𝟐
=∑𝒂.

𝒂𝟐

𝒂𝟐 + 𝒃𝟐
=∑𝒂(𝟏 −

𝒃𝟐

𝒂𝟐 + 𝒃𝟐
 ) ≥

𝑨𝑴−𝑮𝑴
 

 

≥∑𝒂(𝟏 −
𝒃𝟐

𝟐𝒂𝒃
) =∑𝒂−

𝟏

𝟐
∑𝒂 = 𝟑 −

𝟑

𝟐
=
𝟑

𝟐
 

 
Equality holds for a=b=c=1. 

 
2040. If 𝒂, 𝒃, 𝒄 > 0,  𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 = 𝟑 then: 

𝒂

𝒂𝟐 + 𝟕
+

𝒃

𝒃𝟐 + 𝟕
+

𝒄

𝒄𝟐 + 𝟕
≤
𝟑

𝟖
 

 
Proposed by Nguyen Hung Cuong-Vietnam 

Solution by Qurban Mueelim-Azerbaijan 
 

𝑳𝑯𝑺 =∑
𝒂

𝒂𝟐 + 𝟕

 

 

=∑
𝒂

𝒂𝟐 + 𝟑 + 𝟒

 

 

=∑
𝒂

𝒂𝟐 + 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 + 𝟒

 

 

= 

=∑
𝒂

(𝒂 + 𝒄)(𝒂 + 𝒃) + 𝟒

 

 

≤∑
𝒂

𝟒√(𝒂 + 𝒃)(𝒂 + 𝒄)

 

 

=
𝟏

𝟖
∑

𝟐𝒂

√(𝒂 + 𝒃)(𝒂 + 𝒄)

 

 

≤ 

≤
𝟏

𝟖
⋅∑(

𝒂

𝒂 + 𝒃
+

𝒂

𝒂 + 𝒄
)

 

 

=
𝟏

𝟖
⋅∑

𝒂+ 𝒃

𝒂 + 𝒃

 

 

=
𝟏

𝟖
⋅ 𝟑 =

𝟑

𝟖
 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒇𝒐𝒓:  𝒂 = 𝒃 = 𝒄 = 𝟏.   
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2041. 𝑰𝒇 𝒂, 𝒃, 𝒄 ≥ 𝟎 𝒂𝒏𝒅 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 = 𝒕𝒉𝒆𝒏 𝒑𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 ∶ 

𝒂

√𝟒𝒂 + 𝟓𝒃𝒄
+

𝒃

√𝟒𝒃 + 𝟓𝒄𝒂
+

𝒄

√𝟒𝒄 + 𝟓𝒂𝒃
≥ 𝟏 

  Proposed by Dang Ngoc Minh-Vietnam 

Solution by Soumava Chakraborty-Kolkata-India 

𝐒𝐢𝐧𝐜𝐞 𝒂, 𝐛, 𝐜 ≥ 𝟎 ∧  𝒂𝐛 + 𝐛𝐜 + 𝐜𝒂 > 0, 𝐡𝐞𝐧𝐜𝐞 𝐨𝐧𝒍𝐲 𝟐 𝐜𝒂𝐬𝐞𝐬 𝒂𝐫𝐞 𝐩𝐨𝐬𝐬𝐢𝐛𝒍𝐞. 
𝐂𝒂𝐬𝐞 𝟏  𝐄𝒙𝒂𝐜𝐭𝒍𝐲 𝟏 𝐯𝒂𝐫𝐢𝒂𝐛𝒍𝐞 𝐞𝐪𝐮𝒂𝒍𝐬 𝐳𝐞𝐫𝐨 𝒂𝐧𝐝 𝐖𝐋𝐎𝐆 𝐰𝐞 𝐦𝒂𝐲 𝒂𝐬𝐬𝐮𝐦𝐞 𝒂 = 𝟎 
 (𝐛, 𝐜 > 𝟎 𝐰𝐢𝐭𝐡 𝐛𝐜 = 𝟑) 𝒂𝐧𝐝 𝐭𝐡𝐞𝐧, 𝐋𝐇𝐒 𝐨𝐟 𝐦𝒂𝐢𝐧 𝐢𝐧𝐞𝐪𝐮𝒂𝒍𝐢𝐭𝐲 𝐛𝐞𝐜𝐨𝐦𝐞𝐬 ∶ 

√
𝐛𝟐

𝟒𝐛
+√

𝐜𝟐

𝟒𝐜
=
𝟏

𝟐
(√𝐛 + √𝐜) ≥

𝐀𝐌−𝐆𝐌
√𝐛𝐜
𝟒

= √𝟑
𝟒

>
?
𝟏 

𝐂𝒂𝐬𝐞 𝟐  𝒂, 𝐛, 𝐜 > 𝟎 𝒂𝐧𝐝 𝒂𝐬𝐬𝐢𝐠𝐧𝐢𝐧𝐠 𝐛 + 𝐜 = 𝒙, 𝐜 + 𝒂 = 𝐲, 𝒂 + 𝐛 = 𝐳 ⇒ 𝒙 + 𝐲 − 𝐳 = 𝟐𝐜 
> 0, 𝑦 + 𝑧 − 𝒙 = 𝟐𝒂 > 0 𝒂𝐧𝐝 𝐳 + 𝒙 − 𝐲 = 𝟐𝐛 > 0 ⇒ 𝒙 + 𝐲 > 𝑧, 𝐲 + 𝐳 > 𝒙, 𝐳 + 𝒙 > 𝑦 

⇒ 𝒙, 𝐲, 𝐳 𝐟𝐨𝐫𝐦 𝐬𝐢𝐝𝐞𝐬 𝐨𝐟 𝒂 𝐭𝐫𝐢𝒂𝐧𝐠𝐥𝐞 𝐗𝐘𝐙 𝐰𝐢𝐭𝐡 𝐬𝐞𝐦𝐢𝐩𝐞𝐫𝐢𝐦𝐞𝐭𝐞𝐫, 𝐜𝐢𝐫𝐜𝐮𝐦𝐫𝒂𝐝𝐢𝐮𝐬 𝒂𝐧𝐝 𝐢𝐧𝐫𝒂𝐝𝐢𝐮𝐬 

= 𝐬, 𝐑, 𝐫 (𝐬𝒂𝐲);∑𝒂

𝐜𝐲𝐜

= 𝐬, 𝒂𝐛𝐜 = 𝐫𝟐𝐬,∑𝒂𝐛

𝐜𝐲𝐜

= 𝟒𝐑𝐫 + 𝐫𝟐, 

∑𝒂𝟐

𝐜𝐲𝐜

= 𝐬𝟐 − 𝟖𝐑𝐫 − 𝟐𝐫𝟐 𝒂𝐧𝐝 𝐭𝐡𝐞𝐧,∑
𝒂

√𝟒𝒂+ 𝟓𝐛𝐜
𝐜𝐲𝐜

=∑
𝒂
𝟑
𝟐

√𝟒𝒂𝟐 + 𝟓𝒂𝐛𝐜
𝐜𝐲𝐜

 

≥
𝐑𝒂𝐝𝐨𝐧 (∑ 𝒂𝐜𝐲𝐜 )

𝟑
𝟐

√𝟒∑ 𝒂𝟐𝐜𝐲𝐜 + 𝟏𝟓𝒂𝐛𝐜

≥
?
𝟏 ⇔ (∑𝒂

𝐜𝐲𝐜

)

𝟑

− 𝟏𝟓𝒂𝐛𝐜 ≥
?
𝟒∑𝒂𝟐

𝐜𝐲𝐜

 

⇔ 𝟑((∑𝒂

𝐜𝐲𝐜

)

𝟑

− 𝟏𝟓𝒂𝐛𝐜)

𝟐

≥
?
𝟏𝟔(∑𝒂𝐛

𝐜𝐲𝐜

)(∑𝒂𝟐

𝐜𝐲𝐜

)

𝟐

 (∵∑𝒂𝐛

𝐜𝐲𝐜

= 𝟑) 

⇔
𝐯𝐢𝒂 𝐭𝐫𝒂𝐧𝐬𝐟𝐨𝐫𝐦𝒂𝐭𝐢𝐨𝐧

𝟑(𝐬𝟑 − 𝟏𝟓𝐫𝟐𝐬)𝟐 − 𝟏𝟔(𝟒𝐑𝐫 + 𝐫𝟐)(𝐬𝟐 − 𝟖𝐑𝐫 − 𝟐𝐫𝟐)𝟐 ≥
?
⏟
(∗)

𝟎 𝒂𝐧𝐝 

∵ 𝟑(𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐)𝟑 ≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

𝟎 ∴ 𝐢𝐧 𝐨𝐫𝐝𝐞𝐫 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 (∗), 𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 

𝐋𝐇𝐒 𝐨𝐟 (∗) ≥
?
𝟑(𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐)𝟑⇔ (𝟖𝟎𝐑 − 𝟏𝟓𝟏𝐫)𝐬𝟒 − 

𝐫(𝟏𝟐𝟖𝟎𝐑𝟐 − 𝟏𝟗𝟓𝟐𝐑𝐫 − 𝟓𝟏𝟒𝐫𝟐)𝐬𝟐 + 𝐫𝟐(𝟖𝟏𝟗𝟐𝐑𝟑 − 𝟏𝟒𝟓𝟗𝟐𝐑𝟐𝐫 + 𝟐𝟖𝟑𝟐𝐑𝐫𝟐 − 𝟒𝟑𝟗𝐫𝟑) 

≥
?
⏟
(∗∗)

𝟎 𝒂𝐧𝐝 ∵ (𝟖𝟎𝐑 − 𝟏𝟓𝟏𝐫)(𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐)𝟐 ≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

𝟎 ∴ 𝐢𝐧 𝐨𝐫𝐝𝐞𝐫 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 (∗∗), 

𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 𝐋𝐇𝐒 𝐨𝐟 (∗∗) ≥
?
(𝟖𝟎𝐑 − 𝟏𝟓𝟏𝐫)(𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐)𝟐 
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⇔ (𝟏𝟔𝟎𝐑𝟐 − 𝟒𝟔𝟎𝐑𝐫 + 𝟐𝟓𝟑𝐫𝟐)𝐬𝟐 ≥
?
⏟
(∗∗∗)

𝐫(𝟏𝟓𝟑𝟔𝐑𝟑 − 𝟒𝟔𝟎𝟖𝐑𝟐𝐫 + 𝟐𝟗𝟏𝟔𝐑𝐫𝟐 − 𝟒𝟏𝟕𝐫𝟑) 

𝐂𝒂𝐬𝐞 𝟏  𝟏𝟔𝟎𝐑𝟐 − 𝟒𝟔𝟎𝐑𝐫 + 𝟐𝟓𝟑𝐫𝟐 ≥ 𝟎 𝒂𝐧𝐝 𝐭𝐡𝐞𝐧 ∶ 𝐋𝐇𝐒 𝐨𝐟 (∗∗∗) ≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

 

(𝟏𝟔𝟎𝐑𝟐 − 𝟒𝟔𝟎𝐑𝐫 + 𝟐𝟓𝟑𝐫𝟐)(𝟏𝟔𝐑𝐫 − 𝟓𝐫𝟐) ≥
?
𝐑𝐇𝐒 𝐨𝐟 (∗∗∗) 

⇔ 𝟏𝟐𝟖𝐭𝟑 − 𝟒𝟒𝟒𝐭𝟐 + 𝟒𝟐𝟗𝐭 − 𝟏𝟎𝟔 ≥
?
𝟎 (𝐭 =

𝐑

𝐫
) ⇔ (𝐭 − 𝟐)(𝟏𝟐𝟖𝐭𝟐 − 𝟏𝟖𝟖𝐭 + 𝟓𝟑) ≥

?
𝟎 

→ 𝐭𝐫𝐮𝐞 ∵ 𝐭 ≥
𝐄𝐮𝐥𝐞𝐫

𝟐 ⇒ (∗∗∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 

𝐂𝒂𝐬𝐞 𝟐  𝟏𝟔𝟎𝐑𝟐 − 𝟒𝟔𝟎𝐑𝐫 + 𝟐𝟓𝟑𝐫𝟐 < 0 𝑎𝐧𝐝 𝐭𝐡𝐞𝐧 ∶ 𝐋𝐇𝐒 𝐨𝐟 (∗∗∗) ≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

 

(𝟏𝟔𝟎𝐑𝟐 − 𝟒𝟔𝟎𝐑𝐫 + 𝟐𝟓𝟑𝐫𝟐)(𝟒𝐑𝟐 + 𝟒𝐑𝐫 + 𝟑𝐫𝟐) ≥
?
𝐑𝐇𝐒 𝐨𝐟 (∗∗∗) 

⇔ 𝟏𝟔𝟎𝐭𝟒 − 𝟔𝟖𝟒𝐭𝟑 + 𝟏𝟎𝟔𝟓𝐭𝟐 − 𝟖𝟐𝟏𝐭 + 𝟐𝟗𝟒 ≥
?
𝟎 

⇔ (𝐭 − 𝟐) ((𝐭 − 𝟐)(𝟏𝟔𝟎𝐭𝟐 − 𝟒𝟒𝐭 + 𝟐𝟒𝟗) + 𝟑𝟓𝟏) ≥
?
𝟎 → 𝐭𝐫𝐮𝐞 ∵ 𝐭 ≥

𝐄𝐮𝐥𝐞𝐫
𝟐 

⇒ (∗∗∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 ∴ 𝐜𝐨𝐦𝐛𝐢𝐧𝐢𝐧𝐠 𝐛𝐨𝐭𝐡 𝐜𝒂𝐬𝐞𝐬, (∗∗∗) ⇒ (∗∗) ⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 ∀ ∆ 𝐗𝐘𝐙𝐬,𝐑,𝐫 

∴
𝒂

√𝟒𝒂 + 𝟓𝐛𝐜
+

𝐛

√𝟒𝐛 + 𝟓𝐜𝒂
+

𝐜

√𝟒𝐜 + 𝟓𝒂𝐛
≥ 𝟏 ∀ 𝒂, 𝐛, 𝐜 ≥ 𝟎│𝒂𝐛 + 𝐛𝐜 + 𝐜𝒂 = 𝟑, 

′′ =′′  𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 = 𝟏 (𝐐𝐄𝐃) 
 

2042. 𝐈𝐟 𝐤 ≥ 𝟎 𝐭𝐡𝐞𝐧 𝐩𝐫𝐨𝐯𝐞 𝐭𝐡𝒂𝐭 ∶ 

∏(𝐤𝒂𝟐 + (𝐛 − 𝐜)𝟐)

𝐜𝐲𝐜

≥ (𝐤 + 𝟏)𝟐∏(𝒂− 𝐛)𝟐

𝐜𝐲𝐜

 

  Proposed by Dang Ngoc Minh-Vietnam 

Solution by Soumava Chakraborty-Kolkata-India 

∏(𝐤𝒂𝟐 + (𝐛 − 𝐜)𝟐)

𝐜𝐲𝐜

≥
?
(𝐤 + 𝟏)𝟐.∏(𝒂− 𝐛)𝟐

𝐜𝐲𝐜

 

⇔ 𝐤𝟑𝒂𝟐𝐛𝟐𝐜𝟐 + 𝐤𝟐∑(𝒂𝟐𝐛𝟐(𝒂 − 𝐛)𝟐)

𝐜𝐲𝐜

+ 𝐤∑(𝒂𝟐(𝒂 − 𝐛)𝟐(𝐜 − 𝒂)𝟐)

𝐜𝐲𝐜

+∏(𝐛− 𝐜)𝟐

𝐜𝐲𝐜

 

≥
?
∏(𝒂− 𝐛)𝟐

𝐜𝐲𝐜

+ 𝐤𝟐.∏(𝒂 − 𝐛)𝟐

𝐜𝐲𝐜

+ 𝟐𝐤.∏(𝒂 − 𝐛)𝟐

𝐜𝐲𝐜

⇔ 

𝐤𝟐𝒂𝟐𝐛𝟐𝐜𝟐 + 𝐤(∑(𝒂𝟐𝐛𝟐(𝒂 − 𝐛)𝟐)

𝐜𝐲𝐜

−∏(𝒂 − 𝐛)𝟐

𝐜𝐲𝐜

) +∑(𝒂𝟐(𝒂 − 𝐛)𝟐(𝐜 − 𝒂)𝟐)

𝐜𝐲𝐜

− 

𝟐∏(𝒂 − 𝐛)𝟐

𝐜𝐲𝐜

≥
?
𝟎 ⇔ 𝐤𝟐𝒂𝟐𝐛𝟐𝐜𝟐 + 𝐤.𝟐𝒂𝐛𝐜(∑𝒂𝟑

𝐜𝐲𝐜

+ 𝟑𝒂𝐛𝐜 −∑𝒂𝟐𝐛

𝐜𝐲𝐜

−∑𝒂𝐛𝟐

𝐜𝐲𝐜

) + 
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∑(𝒂𝟐(𝒂 − 𝐛)𝟐(𝐜 − 𝒂)𝟐)

𝐜𝐲𝐜

− 𝟐∏(𝒂 − 𝐛)𝟐

𝐜𝐲𝐜

≥
?
⏟
(∗)

𝟎 𝒂𝐧𝐝 𝐧𝐨𝐰, 𝐋𝐇𝐒 𝐨𝐟 (∗) 𝐢𝐬 𝒂 

𝐪𝐮𝒂𝐝𝐫𝒂𝐭𝐢𝐜 𝐩𝐨𝒍𝐲𝐧𝐨𝐦𝐢𝒂𝒍 𝐢𝐧 ′′𝐤𝒂𝐛𝐜′′ 𝐰𝐢𝐭𝐡 𝐝𝐢𝐬𝐜𝐫𝐢𝐦𝐢𝐧𝒂𝐧𝐭 = 

𝟒(∑𝒂𝟑

𝐜𝐲𝐜

+ 𝟑𝒂𝐛𝐜 −∑𝒂𝟐𝐛

𝐜𝐲𝐜

−∑𝒂𝐛𝟐

𝐜𝐲𝐜

)

𝟐

− 

𝟒(∑(𝒂𝟐(𝒂 − 𝐛)𝟐(𝐜 − 𝒂)𝟐)

𝐜𝐲𝐜

− 𝟐∏(𝒂 − 𝐛)𝟐

𝐜𝐲𝐜

) = 𝟎 ⇒ 𝐋𝐇𝐒 𝐨𝐟 (∗) ≥ 𝟎 ⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 

∴∏(𝐤𝒂𝟐 + (𝐛 − 𝐜)𝟐)

𝐜𝐲𝐜

≥ (𝐤 + 𝟏)𝟐.∏(𝒂 − 𝐛)𝟐

𝐜𝐲𝐜

 ∀ 𝐤 ≥ 𝟎,′′=′′  𝐢𝐟𝐟 𝐤 = 𝟎 (𝐐𝐄𝐃) 

 

2043. 𝐈𝐟 𝒂, 𝐛, 𝐜 ≥ 𝟎 𝐭𝐡𝐞𝐧 𝐩𝐫𝐨𝐯𝐞 𝐭𝐡𝒂𝐭 ∶ 

𝒂𝟒𝐛 + 𝐛𝟒𝐜 + 𝐜𝟒𝒂 ≤ (𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐)((𝒂 + 𝐛 + 𝐜)(𝒂𝐛 + 𝐛𝐜 + 𝐜𝒂) − 𝟖𝒂𝐛𝐜) 

  Proposed by Dang Ngoc Minh-Vietnam 

Solution by Soumava Chakraborty-Kolkata-India 

𝐈𝐟 𝒂 = 𝐛 = 𝐜 = 𝟎 𝐨𝐫 𝐢𝐟 𝐞𝒙𝒂𝐜𝐭𝒍𝐲 𝟐 𝐯𝒂𝐫𝐢𝒂𝐛𝒍𝐞𝐬 𝐞𝐪𝐮𝒂𝒍 𝐭𝐨 𝐳𝐞𝐫𝐨, 𝐭𝐡𝐞𝐧 𝐋𝐇𝐒 = 𝐑𝐇𝐒 

= 𝟎 𝒂𝐧𝐝 𝐢𝐟 𝐞𝒙𝒂𝐜𝐭𝒍𝐲 𝟏 𝐯𝒂𝐫𝐢𝒂𝐛𝒍𝐞 𝐞𝐪𝐮𝒂𝒍𝐬 𝐭𝐨 𝐳𝐞𝐫𝐨, (𝐖𝐋𝐎𝐆 𝒂 = 𝟎;𝐛, 𝐜 > 0) 𝐭𝐡𝐞𝐧 ∶ 

𝐑𝐇𝐒 − 𝐋𝐇𝐒 = 𝐛𝐜(𝐛𝟐 + 𝐜𝟐)(𝐛 + 𝐜) − 𝐛𝟒𝐜 = 𝐛𝟑𝐜𝟐 + 𝐛𝟐𝐜𝟑 + 𝐛𝐜𝟒 > 0 𝑎𝐧𝐝 𝐧𝐨𝐰 𝐰𝐞 

𝐟𝐨𝐜𝐮𝐬 𝐨𝐧 𝐭𝐡𝐞 𝐜𝒂𝐬𝐞 𝐰𝐡𝐞𝐧 𝒂, 𝐛, 𝐜 > 0 𝒂𝐧𝐝 𝒂𝐬𝐬𝐢𝐠𝐧𝐢𝐧𝐠 𝐛 + 𝐜 = 𝒙, 𝐜 + 𝒂 = 𝐲, 𝒂 + 𝐛 = 𝐳 

⇒ 𝒙 + 𝐲 − 𝐳 = 𝟐𝐜 > 0, 𝑦 + 𝑧 − 𝒙 = 𝟐𝒂 > 0 𝒂𝐧𝐝 𝐳 + 𝒙 − 𝐲 = 𝟐𝐛 > 0 ⇒ 𝒙 + 𝐲 > 𝑧, 

𝐲 + 𝐳 > 𝒙, 𝐳 + 𝒙 > 𝑦 ⇒ 𝒙, 𝐲, 𝐳 𝐟𝐨𝐫𝐦 𝐬𝐢𝐝𝐞𝐬 𝐨𝐟 𝒂 𝐭𝐫𝐢𝒂𝐧𝐠𝐥𝐞 𝐗𝐘𝐙 𝐰𝐢𝐭𝐡 𝐬𝐞𝐦𝐢𝐩𝐞𝐫𝐢𝐦𝐞𝐭𝐞𝐫, 

𝐜𝐢𝐫𝐜𝐮𝐦𝐫𝒂𝐝𝐢𝐮𝐬 𝒂𝐧𝐝 𝐢𝐧𝐫𝒂𝐝𝐢𝐮𝐬 = 𝐬, 𝐑, 𝐫 (𝐬𝒂𝐲); 𝐭𝐡𝐞𝐧 ∶ ∑𝒂

𝐜𝐲𝐜

= 𝐬, 𝒂𝐛𝐜 = 𝐫𝟐𝐬, 

∑𝒂𝐛

𝐜𝐲𝐜

= 𝟒𝐑𝐫 + 𝐫𝟐,∑𝒂𝟐

𝐜𝐲𝐜

= 𝐬𝟐 − 𝟖𝐑𝐫 − 𝟐𝐫𝟐,∑𝒂𝟐𝐛𝟐

𝐜𝐲𝐜

= 𝐫𝟐((𝟒𝐑 + 𝐫)𝟐 − 𝟐𝐬𝟐), 

∑𝒂𝟑

𝐜𝐲𝐜

= 𝐬𝟑 − 𝟏𝟐𝐑𝐫𝐬; 𝐭𝐡𝐞𝐧 ∶ 𝐋𝐇𝐒 − 𝐑𝐇𝐒 =∑(𝒂𝐛(∑𝒂𝟑

𝐜𝐲𝐜

− 𝐜𝟑))

𝐜𝐲𝐜

− 𝒂𝐛𝐜∑
𝐛𝟒

𝐛𝐜
𝐜𝐲𝐜

− 

𝐬(𝐬𝟐 − 𝟖𝐑𝐫 − 𝟐𝐫𝟐)(𝟒𝐑𝐫 − 𝟕𝐫𝟐) ≤
𝐁𝐞𝐫𝐠𝐬𝐭𝐫𝐨𝐦

(𝟒𝐑𝐫 + 𝐫𝟐)(𝐬𝟑 − 𝟏𝟐𝐑𝐫𝐬) − 
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𝐫𝟐𝐬(𝐬𝟐 − 𝟖𝐑𝐫 − 𝟐𝐫𝟐) − 𝐫𝟐𝐬.
(𝐬𝟐 − 𝟖𝐑𝐫 − 𝟐𝐫𝟐)𝟐

𝟒𝐑𝐫 + 𝐫𝟐
− 𝐬(𝐬𝟐 − 𝟖𝐑𝐫 − 𝟐𝐫𝟐)(𝟒𝐑𝐫 − 𝟕𝐫𝟐) ≤

?
𝟎 

⇔ 𝐬𝟒 − (𝟒𝟒𝐑𝐫 + 𝟏𝟏𝐫𝟐)𝐬𝟐 + 𝐫(𝟔𝟒𝐑𝟑 + 𝟐𝟖𝟖𝐑𝟐𝐫 + 𝟏𝟑𝟐𝐑𝐫𝟐 + 𝟏𝟔𝐫𝟑) ≥
?
⏟
(∗)

𝟎 𝒂𝐧𝐝 

∵ (𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐)𝟐 ≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

𝟎 ∴ 𝐢𝐧 𝐨𝐫𝐝𝐞𝐫 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 (∗), 𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 

𝐋𝐇𝐒 𝐨𝐟 (∗) ≥
?
(𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐)𝟐 

⇔ 𝟔𝟒𝐑𝟑 + 𝟑𝟐𝐑𝟐𝐫 + 𝟐𝟗𝟐𝐑𝐫𝟐 − 𝟗𝐫𝟑 ≥
?
⏟
(∗∗)

(𝟏𝟐𝐑+ 𝟐𝟏𝐫)𝐬𝟐 

𝐍𝐨𝐰, (𝟏𝟐𝐑 + 𝟐𝟏𝐫)𝐬𝟐 ≤
𝐑𝐨𝐮𝐜𝐡𝐞

(𝟏𝟐𝐑 + 𝟐𝟏𝐫) (
𝟐𝐑𝟐 + 𝟏𝟎𝐑𝐫 − 𝐫𝟐 +

𝟐(𝐑 − 𝟐𝐫).√𝐑𝟐 − 𝟐𝐑𝐫
) 

≤
?
𝟔𝟒𝐑𝟑 + 𝟑𝟐𝐑𝟐𝐫 + 𝟐𝟗𝟐𝐑𝐫𝟐 − 𝟗𝐫𝟑 

⇔ 𝟐(𝐑 − 𝟐𝐫)(𝟐𝟎𝐑𝟐 − 𝟐𝟓𝐑𝐫 − 𝟑𝐫𝟐) ≥
?
𝟐(𝐑 − 𝟐𝐫)(𝟏𝟐𝐑+ 𝟐𝟏𝐫).√𝐑𝟐 − 𝟐𝐑𝐫 𝒂𝐧𝐝 

∵ 𝐑 − 𝟐𝐫 ≥
𝐄𝐮𝒍𝐞𝐫

𝟎 ∴ 𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 

(𝟐𝟎𝐑𝟐 − 𝟐𝟓𝐑𝐫 − 𝟑𝐫𝟐)𝟐 >
?
(𝐑𝟐 − 𝟐𝐑𝐫)(𝟏𝟐𝐑 + 𝟐𝟏𝐫)𝟐 

⇔ 𝟐𝟓𝟔𝐭𝟒 − 𝟏𝟐𝟏𝟔𝐭𝟑 + 𝟏𝟎𝟕𝟐𝐭𝟐 + 𝟏𝟎𝟑𝟐𝐭 + 𝟗 >
?
𝟎 (𝐭 =

𝐑

𝐫
) 

⇔
𝟏

𝟐𝟕
((𝟕𝟔𝟖𝐭𝟐 + 𝟒𝟒𝟖𝐭 + 𝟏𝟒𝟒)(𝟑𝐭 − 𝟖)𝟐 + 𝟔𝟏𝟎𝟒𝐭 − 𝟖𝟗𝟕𝟑) >

?
𝟎 → 𝐭𝐫𝐮𝐞 ∵ 𝐭 ≥

𝐄𝐮𝒍𝐞𝐫
𝟐 

⇒ (∗∗) ⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 

∴ 𝒂𝟒𝐛 + 𝐛𝟒𝐜 + 𝐜𝟒𝒂 ≤ (𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐)((𝒂 + 𝐛 + 𝐜)(𝒂𝐛 + 𝐛𝐜 + 𝐜𝒂) − 𝟖𝒂𝐛𝐜)  

∀ 𝒂, 𝐛, 𝐜 ≥ 𝟎, ′′ =′′  𝐢𝐟𝐟  (𝒂 = 𝐛 = 𝟎 ≤ 𝐜) 𝐨𝐫 (𝐛 = 𝐜 = 𝟎 ≤ 𝒂) 𝐨𝐫 (𝐜 = 𝒂 = 𝟎 ≤ 𝐛) 

𝐨𝐫 𝒂 = 𝐛 = 𝐜 > 0 (𝐐𝐄𝐃) 

2044. 

𝐈𝐟 𝒂, 𝐛, 𝐜 ≥ 𝟎, 𝒂𝐛 + 𝐛𝐜 + 𝐜𝒂 > 0 𝐭𝐡𝐞𝐧 𝐩𝐫𝐨𝐯𝐞 𝐭𝐡𝒂𝐭 ∶ 

𝟏

𝒂 + 𝐛
+

𝟏

𝐛 + 𝐜
+

𝟏

𝐜 + 𝒂
≥

𝟏𝟓

𝟑(𝒂 + 𝐛 + 𝐜) + √𝒂𝐛𝐜
𝟑  

  Proposed by Dang Ngoc Minh-Vietnam 
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Solution by Soumava Chakraborty-Kolkata-India 

𝐈𝐟 𝐞𝒙𝒂𝐜𝐭𝒍𝐲 𝟏 𝐯𝒂𝐫𝐢𝒂𝐛𝒍𝐞 𝐞𝐪𝐮𝒂𝒍𝐬 𝐭𝐨 𝐳𝐞𝐫𝐨, (𝐖𝐋𝐎𝐆 𝒂 = 𝟎;𝐛, 𝐜 > 0) 𝐭𝐡𝐞𝐧 ∶ 𝐋𝐇𝐒 = 
𝟏

𝐛
+
𝟏

𝐜
+

𝟏

𝐛 + 𝐜
≥

𝐁𝐞𝐫𝐠𝐬𝐭𝐫𝐨𝐦 𝟒

𝐛 + 𝐜
+

𝟏

𝐛 + 𝐜
=

𝟓

𝐛 + 𝐜
=

𝟏𝟓

𝟑(𝒂 + 𝐛 + 𝐜) + √𝒂𝐛𝐜
𝟑   (∵ 𝒂 = 𝟎) 

𝒂𝐧𝐝 𝐧𝐨𝐰 𝐰𝐞 𝐟𝐨𝐜𝐮𝐬 𝐨𝐧 𝐭𝐡𝐞 𝐜𝒂𝐬𝐞 𝐰𝐡𝐞𝐧 𝒂, 𝐛, 𝐜 > 0 𝒂𝐧𝐝 𝒂𝐬𝐬𝐢𝐠𝐧𝐢𝐧𝐠 𝐛 + 𝐜 = 𝒙, 𝐜 + 𝒂 = 𝐲, 
𝒂 + 𝐛 = 𝐳 ⇒ 𝒙 + 𝐲 − 𝐳 = 𝟐𝐜 > 0, 𝑦 + 𝑧 − 𝒙 = 𝟐𝒂 > 0 𝒂𝐧𝐝 𝐳 + 𝒙 − 𝐲 = 𝟐𝐛 > 0 
⇒ 𝒙 + 𝐲 > 𝑧, 𝐲 + 𝐳 > 𝒙, 𝐳 + 𝒙 > 𝑦 ⇒ 𝒙, 𝐲, 𝐳 𝐟𝐨𝐫𝐦 𝐬𝐢𝐝𝐞𝐬 𝐨𝐟 𝒂 𝐭𝐫𝐢𝒂𝐧𝐠𝐥𝐞 𝐗𝐘𝐙  

𝐰𝐢𝐭𝐡 𝐬𝐞𝐦𝐢𝐩𝐞𝐫𝐢𝐦𝐞𝐭𝐞𝐫, 𝐜𝐢𝐫𝐜𝐮𝐦𝐫𝒂𝐝𝐢𝐮𝐬 𝒂𝐧𝐝 𝐢𝐧𝐫𝒂𝐝𝐢𝐮𝐬 = 𝐬,𝐑, 𝐫 (𝐬𝒂𝐲); 𝐭𝐡𝐞𝐧 ∶ ∑𝒂

𝐜𝐲𝐜

= 𝐬, 

𝒂𝐛𝐜 = 𝐫𝟐𝐬,∑𝒂𝐛

𝐜𝐲𝐜

= 𝟒𝐑𝐫 + 𝐫𝟐 𝒂𝐧𝐝 𝐭𝐡𝐞𝐧, 𝐯𝐢𝒂 𝐆𝐌 − 𝐇𝐌 ∶ 𝐋𝐇𝐒 − 𝐑𝐇𝐒 = 

𝟏

𝟒𝐑𝐫𝐬
((∑𝒂

𝐜𝐲𝐜

)

𝟐

+∑𝒂𝐛

𝐜𝐲𝐜

)−
𝟓

∑ 𝒂𝐜𝐲𝐜 +
𝒂𝐛𝐜
∑ 𝒂𝐛𝐜𝐲𝐜

 

=
𝐬𝟐 + 𝟒𝐑𝐫 + 𝐫𝟐

𝟒𝐑𝐫𝐬
−

𝟓(𝟒𝐑𝐫 + 𝐫𝟐)

𝐬(𝟒𝐑𝐫 + 𝐫𝟐) + 𝐫𝟐𝐬
≥
?
𝟎 ⇔ (𝟐𝐑 + 𝐫)𝐬𝟐 ≥

?
𝐫(𝟑𝟐𝐑𝟐 + 𝟒𝐑𝐫 − 𝐫𝟐) 

→ 𝐭𝐫𝐮𝐞 ∵ (𝟐𝐑+ 𝐫)𝐬𝟐 − 𝐫(𝟑𝟐𝐑𝟐 + 𝟒𝐑𝐫 − 𝐫𝟐) ≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

 

(𝟐𝐑 + 𝐫)(𝟏𝟔𝐑𝐫 − 𝟓𝐫𝟐) − 𝐫(𝟑𝟐𝐑𝟐 + 𝟒𝐑𝐫 − 𝐫𝟐) = 𝟐𝐫𝟐(𝐑 − 𝟐𝐫) ≥
𝐄𝐮𝒍𝐞𝐫

𝟎 

∴
𝟏

𝒂 + 𝐛
+

𝟏

𝐛 + 𝐜
+

𝟏

𝐜 + 𝒂
≥

𝟏𝟓

𝟑(𝒂 + 𝐛 + 𝐜) + √𝒂𝐛𝐜
𝟑  ∀ 𝒂, 𝐛, 𝐜 ≥ 𝟎, 

′′ =′′  𝐢𝐟𝐟  (𝒂 = 𝟎 < 𝑏 = 𝑐) 𝐨𝐫 (𝐛 = 𝟎 < 𝑐 = 𝒂) 𝐨𝐫 (𝐜 = 𝟎 < 𝒂 = 𝐛) 
𝐨𝐫 𝒂 = 𝐛 = 𝐜 > 0 (𝐐𝐄𝐃) 

 

2045. 𝐈𝐧 𝒂𝐧𝐲 ∆ 𝐀𝐁𝐂 𝐭𝐡𝐞 𝐟𝐨𝒍𝒍𝐨𝐰𝐢𝐧𝐠 𝐫𝐞𝒍𝒂𝐭𝐢𝐨𝐧𝐬𝐡𝐢𝐩 𝐡𝐨𝒍𝐝𝐬 ∶ 

√
𝒂

𝟑𝒂 + 𝟓𝐛
+ √

𝐛

𝟑𝐛 + 𝟓𝐜
+ √

𝐜

𝟑𝐜 + 𝟓𝒂
≤
𝟑√𝟐

𝟒
 

  Proposed by Dang Ngoc Minh-Vietnam 

Solution by Soumava Chakraborty-Kolkata-India 

∑√
𝒂

𝟑𝒂 + 𝟓𝐛
𝐜𝐲𝐜

= 

=
𝟏

√(𝟑𝒂 + 𝟓𝐛)(𝟑𝐛 + 𝟓𝐜)(𝟑𝐜 + 𝟓𝒂)
.∑√𝒂(𝟑𝐛 + 𝟓𝐜)(𝟑𝐜 + 𝟓𝒂)

𝐜𝐲𝐜

≤ 
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≤
𝐂𝐁𝐒 𝟏

√(𝟑𝒂 + 𝟓𝐛)(𝟑𝐛 + 𝟓𝐜)(𝟑𝐜 + 𝟓𝒂)
.√∑(𝒂(𝟑𝐛 + 𝟓𝐜))

𝐜𝐲𝐜

. √∑(𝟑𝐜 + 𝟓𝒂)

𝐜𝐲𝐜

= 

=
𝟏

√∏ (𝟑𝒂+ 𝟓𝐛)𝐜𝐲𝐜

. √(𝟖∑𝒂𝐛

𝐜𝐲𝐜

)(𝟖∑𝒂

𝐜𝐲𝐜

) 

= √
𝟔𝟒(∑ 𝒂𝟐𝐛𝐜𝐲𝐜 +∑ 𝒂𝐛𝟐𝐜𝐲𝐜 + 𝟑𝒂𝐛𝐜)

𝟒𝟓∑ 𝒂𝟐𝐛𝐜𝐲𝐜 + 𝟕𝟓∑ 𝒂𝐛𝟐𝐜𝐲𝐜 + 𝟏𝟓𝟐𝒂𝐛𝐜
≤
? 𝟑√𝟐

𝟒
 

⇔ 𝟏𝟎𝟕∑𝒂𝟐𝐛

𝐜𝐲𝐜

+ 𝟏𝟔𝟖𝒂𝐛𝐜 ≤
?
𝟏𝟔𝟑∑𝒂𝐛𝟐

𝐜𝐲𝐜

⇔ 𝟏𝟎𝟕∑((𝐲 + 𝐳)𝟐(𝐳 + 𝒙))

𝐜𝐲𝐜

+ 

𝟏𝟔𝟖(𝐲 + 𝐳)(𝐳 + 𝒙)(𝒙 + 𝐲) ≤
?
𝟏𝟔𝟑∑((𝐲 + 𝐳)(𝐳 + 𝒙)𝟐)

𝐜𝐲𝐜

 

(𝒙 = 𝐬 − 𝒂, 𝐲 = 𝐬 − 𝐛, 𝐳 = 𝐬 − 𝐜) ⇔ 𝟓𝟔∑𝒙𝟑

𝐜𝐲𝐜

+ 𝟏𝟎𝟕∑𝒙𝟐𝐲

𝐜𝐲𝐜

− 𝟏𝟔𝟑∑𝒙𝐲𝟐

𝐜𝐲𝐜

≥
?
⏟
(∗)

𝟎 

𝐋𝐞𝐭 𝐅(𝐗, 𝐘, 𝐙) = 𝟓𝟔∑𝐗𝟑

𝐜𝐘𝐜

+ 𝟏𝟎𝟕∑𝐗𝟐𝐘

𝐜𝐘𝐜

− 𝟏𝟔𝟑∑𝐗𝐘𝟐

𝐜𝐘𝐜

 ∀ 𝐗, 𝐘, 𝐙 ≥ 𝟎 𝒂𝐧𝐝 𝐭𝐡𝐞𝐧 ∶ 

𝐅(𝟏, 𝟏, 𝟏) = 𝟎 →① 𝒂𝐧𝐝 𝐅(𝐗, 𝐘, 𝟎) = 𝟓𝟔(𝐗𝟑 + 𝐘𝟑) + 𝟏𝟎𝟕𝐗𝟐𝐘 − 𝟏𝟔𝟑𝐗𝐘𝟐 

=
(𝟓𝟎𝟒𝐗 + 𝟏𝟓𝟐𝟑𝐘)(𝟗𝐗 − 𝟓𝐘)𝟐 + 𝟓𝟔𝟒𝟑𝐗𝐘𝟐 + 𝟐𝟕𝟒𝟗𝐘𝟑

𝟕𝟐𝟗
≥ 𝟎 ⇒ 𝐅(𝐗, 𝐘, 𝟎) ≥ 𝟎 →② 

∴① 𝒂𝐧𝐝 ② ⇒ 𝐅(𝐗, 𝐘, 𝐙) ≥ 𝟎 ∀ 𝐗, 𝐘, 𝐙 ≥ 𝟎 ⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 

∴ √
𝒂

𝟑𝒂+ 𝟓𝐛
+√

𝐛

𝟑𝐛 + 𝟓𝐜
+ √

𝐜

𝟑𝐜 + 𝟓𝒂
≤
𝟑√𝟐

𝟒
 ∀ 𝐀𝐁𝐂, 

′′ = ′′ 𝐢𝐟𝐟 ∆ 𝐀𝐁𝐂 𝐢𝐬 𝐞𝐪𝐮𝐢𝒍𝒂𝐭𝐞𝐫𝒂𝒍 (𝐐𝐄𝐃) 
 

2046. 𝐈𝐧 𝒂𝐧𝐲 ∆ 𝐀𝐁𝐂  𝟎 ≤ 𝐤 ≤ 𝟓√𝟓 𝐭𝐡𝐞 𝐟𝐨𝒍𝒍𝐨𝐰𝐢𝐧𝐠 𝐫𝐞𝒍𝒂𝐭𝐢𝐨𝐧𝐬𝐡𝐢𝐩 𝐡𝐨𝒍𝐝𝐬 ∶ 

𝐤𝒂 + 𝐛

𝒂 + 𝐜
+
𝐤𝐛 + 𝐜

𝐛 + 𝒂
+
𝐤𝐜 + 𝒂

𝐜 + 𝐛
≥
𝟑(𝐤 + 𝟏)

𝟐
 

  Proposed by Dang Ngoc Minh-Vietnam 

Solution by Soumava Chakraborty-Kolkata-India 

𝐤𝒂 + 𝐛

𝒂 + 𝐜
+
𝐤𝐛 + 𝐜

𝐛 + 𝒂
+
𝐤𝐜 + 𝒂

𝐜 + 𝐛
≥
? 𝟑(𝐤 + 𝟏)

𝟐
 

⇔∑
(𝐤(𝐲 + 𝐳) + (𝐳 + 𝒙))(𝟐𝐳 + 𝒙 + 𝐲)(𝟐𝒙 + 𝐲 + 𝐳)

(𝟐𝒙 + 𝐲 + 𝐳)(𝟐𝐲 + 𝐳 + 𝒙)(𝟐𝐳 + 𝒙 + 𝐲)
𝐜𝐲𝐜

≥
? 𝟑(𝐤 + 𝟏)

𝟐
 

(𝒙 = 𝐬 − 𝒂, 𝐲 = 𝐬 − 𝐛, 𝐳 = 𝐬 − 𝐜 ⇒ 𝒂 = 𝐲 + 𝐳, 𝐛 = 𝐳 + 𝒙, 𝐜 = 𝒙 + 𝐲) 
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⇔ 𝟐∑𝒙𝟑

𝐜𝐲𝐜

+ (𝐤 + 𝟏)∑𝒙𝟐𝐲

𝐜𝐲𝐜

+ (𝟏 − 𝐤)∑𝒙𝐲𝟐

𝐜𝐲𝐜

− 𝟏𝟐𝒙𝐲𝐳 ≥
?
⏟
(∗)

𝟎  

𝐋𝐞𝐭 𝐅(𝐗, 𝐘, 𝐙) = 𝟐∑𝐗𝟑

𝐜𝐘𝐜

+ (𝐤 + 𝟏)∑𝐗𝟐𝐘

𝐜𝐘𝐜

+ (𝟏 − 𝐤)∑𝐗𝐘𝟐

𝐜𝐘𝐜

− 𝟏𝟐𝐗𝐘𝐙 ∀ 𝐗, 𝐘, 𝐙 ≥ 𝟎 

𝒂𝐧𝐝 𝐭𝐡𝐞𝐧 ∶ 𝐅(𝟏, 𝟏, 𝟏) = 𝟎 →① 𝒂𝐧𝐝 𝐅(𝐗, 𝐘, 𝟎) = 
𝟐(𝐗𝟑 + 𝐘𝟑) + (𝐤 + 𝟏)𝐗𝟐𝐘 + (𝟏 − 𝐤)𝐗𝐘𝟐 

= 𝟐(𝐗𝟑 + 𝐘𝟑) + 𝐗𝟐𝐘 + 𝐗𝐘𝟐 + 𝐤(𝐗𝟐𝐘 − 𝐗𝐘𝟐) 𝒂𝐧𝐝 𝐢𝐭′𝐬 𝐭𝐫𝐢𝐯𝐢𝒂𝒍𝒍𝐲 ≥ 𝟎 𝐰𝐡𝐞𝐧 ∶ 𝐗 ≥ 𝐘 

𝒂𝐧𝐝 𝐰𝐡𝐞𝐧 ∶ 𝐗 < 𝑌, 𝐹(𝐗, 𝐘, 𝟎) = 𝟐(𝐗𝟑 + 𝐘𝟑) + 𝐗𝟐𝐘 + 𝐗𝐘𝟐 − 𝐗𝐘𝐤(𝐘 − 𝐗) ≥
?
𝟎 

⇔ (𝟐(𝐗𝟑 + 𝐘𝟑) + 𝐗𝟐𝐘 + 𝐗𝐘𝟐)𝟐 ≥
?
𝐤𝟐𝐗𝟐𝐘𝟐(𝐘 − 𝐗)𝟐 𝒂𝐧𝐝 ∵ 𝟎 ≤ 𝐤 ≤ 𝟓√𝟓 

∴ 𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ (𝟐(𝐗𝟑 + 𝐘𝟑) + 𝐗𝟐𝐘 + 𝐗𝐘𝟐)𝟐 ≥
?
𝟏𝟐𝟓𝐗𝟐𝐘𝟐(𝐘 − 𝐗)𝟐 

⇔ 𝐗𝟔 + 𝐗𝟓𝐘 − 𝟑𝟎𝐗𝟒𝐘𝟐 + 𝟔𝟓𝐗𝟑𝐘𝟑 − 𝟑𝟎𝐗𝟐𝐘𝟒 + 𝐗𝐘𝟓 + 𝐘𝟔 ≥
?
𝟎 

⇔ (𝐗𝟐 − 𝟑𝐗𝐘 + 𝐘𝟐)𝟐(𝐗𝟐 + 𝟕𝐗𝐘 + 𝐘𝟐) ≥
?
𝟎 → 𝐭𝐫𝐮𝐞 ∵ 𝐗, 𝐘 ≥ 𝟎 ⇒ 𝐅(𝐗, 𝐘, 𝟎) ≥ 𝟎 

∀ 𝐗, 𝐘 ≥ 𝟎 →② ∴① 𝒂𝐧𝐝 ② ⇒ 𝐅(𝐗, 𝐘, 𝐙) ≥ 𝟎 ∀ 𝐗, 𝐘, 𝐙 ≥ 𝟎 ⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞  

(∵ 𝒙, 𝐲, 𝐳 > 0) ∴
𝐤𝒂 + 𝐛

𝒂 + 𝐜
+
𝐤𝐛 + 𝐜

𝐛 + 𝒂
+
𝐤𝐜 + 𝒂

𝐜 + 𝐛
≥
𝟑(𝐤 + 𝟏)

𝟐
  ∀ 𝐀𝐁𝐂 ∧ 𝟎 ≤ 𝐤 ≤ 𝟓√𝟓, 

′′ = ′′ 𝐢𝐟𝐟 ∆ 𝐀𝐁𝐂 𝐢𝐬 𝐞𝐪𝐮𝐢𝒍𝒂𝐭𝐞𝐫𝒂𝒍 (𝐐𝐄𝐃) 
 

2047. 𝐈𝐟 𝐤 ≥ 𝟎 𝐭𝐡𝐞𝐧 𝐩𝐫𝐨𝐯𝐞 𝐭𝐡𝒂𝐭 ∶ 

∏(𝐤𝒂𝟐 + (𝐛 + 𝐜)𝟐)

𝐜𝐲𝐜

≥ ((𝐤 − 𝟏)(𝒂 + 𝐛 + 𝐜)(𝒂𝐛 + 𝐛𝐜 + 𝐜𝒂) + (𝟏 − 𝟑𝐤)𝒂𝐛𝐜)
𝟐
 

  Proposed by Dang Ngoc Minh-Vietnam 

Solution by Soumava Chakraborty-Kolkata-India 

∏(𝐤𝒂𝟐 + (𝐛 + 𝐜)𝟐)

𝐜𝐲𝐜

≥ ((𝐤 − 𝟏)(∑𝒂

𝐜𝐲𝐜

)(∑𝒂𝐛

𝐜𝐲𝐜

) + (𝟏 − 𝟑𝐤)𝒂𝐛𝐜)

𝟐

⇔ 

𝐤𝟑𝒂𝟐𝐛𝟐𝐜𝟐 + 𝐤𝟐∑(𝒂𝟐𝐛𝟐(𝒂 + 𝐛)𝟐)

𝐜𝐲𝐜

+ 𝐤∑(𝒂𝟐(𝒂 + 𝐛)𝟐(𝐜 + 𝒂)𝟐)

𝐜𝐲𝐜

+∏(𝐛+ 𝐜)𝟐

𝐜𝐲𝐜

≥
?

 

(𝐤𝟐 − 𝟐𝐤 + 𝟏)(∑𝒂

𝐜𝐲𝐜

)

𝟐

(∑𝒂𝐛

𝐜𝐲𝐜

)

𝟐

+ (𝟏 − 𝟔𝐤 + 𝟗𝐤𝟐)𝒂𝟐𝐛𝟐𝐜𝟐 + 

(𝟖𝐤 − 𝟔𝐤𝟐 − 𝟐)𝒂𝐛𝐜(∑𝒂

𝐜𝐲𝐜

)(∑𝒂𝐛

𝐜𝐲𝐜

) ⇔ 𝐤𝟑𝒂𝟐𝐛𝟐𝐜𝟐 + 
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𝐤𝟐

(

 
 
 
 ∑(𝒂𝟐𝐛𝟐(𝒂 + 𝐛)𝟐)

𝐜𝐲𝐜

− (∑𝒂

𝐜𝐲𝐜

)

𝟐

(∑𝒂𝐛

𝐜𝐲𝐜

)

𝟐

− 𝟗𝒂𝟐𝐛𝟐𝐜𝟐 +

𝟔𝒂𝐛𝐜(∑𝒂

𝐜𝐲𝐜

)(∑𝒂𝐛

𝐜𝐲𝐜

)

)

 
 
 
 

+ 

𝐤

(

 
 
 
 
 

𝐓 =

(

 
 
 
 ∑(𝒂𝟐(𝒂 + 𝐛)𝟐(𝐜 + 𝒂)𝟐)

𝐜𝐲𝐜

+ 𝟐(∑𝒂

𝐜𝐲𝐜

)

𝟐

(∑𝒂𝐛

𝐜𝐲𝐜

)

𝟐

+ 𝟔𝒂𝟐𝐛𝟐𝐜𝟐 −

𝟖𝒂𝐛𝐜(∑𝒂

𝐜𝐲𝐜

)(∑𝒂𝐛

𝐜𝐲𝐜

)

)

 
 
 
 

)

 
 
 
 
 

+ 

∏(𝐛 + 𝐜)𝟐

𝐜𝐲𝐜

−(∑𝒂

𝐜𝐲𝐜

)

𝟐

(∑𝒂𝐛

𝐜𝐲𝐜

)

𝟐

− 𝒂𝟐𝐛𝟐𝐜𝟐 + 𝟐𝒂𝐛𝐜(∑𝒂

𝐜𝐲𝐜

)(∑𝒂𝐛

𝐜𝐲𝐜

) ≥
?
𝟎 

⇔ 𝐤𝟐𝒂𝟐𝐛𝟐𝐜𝟐 − 𝟐𝐤𝒂𝐛𝐜(∑𝒂𝟑

𝐜𝐲𝐜

+ 𝟑𝒂𝐛𝐜 +∑𝒂𝟐𝐛

𝐜𝐲𝐜

+∑𝒂𝐛𝟐

𝐜𝐲𝐜

) + 𝐓 ≥
?
⏟
(∗)

𝟎 (∵ 𝐤 ≥ 𝟎) 

(∵∏(𝐛 + 𝐜)𝟐

𝐜𝐲𝐜

−(∑𝒂

𝐜𝐲𝐜

)

𝟐

(∑𝒂𝐛

𝐜𝐲𝐜

)

𝟐

− 𝒂𝟐𝐛𝟐𝐜𝟐 + 𝟐𝒂𝐛𝐜(∑𝒂

𝐜𝐲𝐜

)(∑𝒂𝐛

𝐜𝐲𝐜

) = 𝟎) 

𝒂𝐧𝐝 𝐧𝐨𝐰, 𝐋𝐇𝐒 𝐨𝐟 (∗) 𝐢𝐬 𝒂 𝐪𝐮𝒂𝐝𝐫𝒂𝐭𝐢𝐜 𝐩𝐨𝒍𝐲𝐧𝐨𝐦𝐢𝒂𝒍 𝐢𝐧 ′′𝐤𝒂𝐛𝐜′′ 𝐰𝐢𝐭𝐡 𝐝𝐢𝐬𝐜𝐫𝐢𝐦𝐢𝐧𝒂𝐧𝐭 = 

𝟒(∑𝒂𝟑

𝐜𝐲𝐜

+ 𝟑𝒂𝐛𝐜 +∑𝒂𝟐𝐛

𝐜𝐲𝐜

+∑𝒂𝐛𝟐

𝐜𝐲𝐜

)

𝟐

− 𝟒𝐓 = 𝟒𝐓− 𝟒𝐓 = 𝟎 

(

 
 
 
 ∵ (∑𝒂𝟑

𝐜𝐲𝐜

+ 𝟑𝒂𝐛𝐜 +∑𝒂𝟐𝐛

𝐜𝐲𝐜

+∑𝒂𝐛𝟐

𝐜𝐲𝐜

)

𝟐

=∑𝒂𝟔

𝐜𝐲𝐜

+ 𝟐∑𝒂𝟓𝐛

𝐜𝐲𝐜

+ 𝟐∑𝒂𝐛𝟓

𝐜𝐲𝐜

+ 𝟑∑𝒂𝟒𝐛𝟐

𝐜𝐲𝐜

+

𝟑∑𝒂𝟐𝐛𝟒

𝐜𝐲𝐜

+ 𝟖𝒂𝐛𝐜∑𝒂𝟑

𝐜𝐲𝐜

+ 𝟒∑𝒂𝟑𝐛𝟑

𝐜𝐲𝐜

+ 𝟏𝟎𝒂𝐛𝐜(∑𝒂𝟐𝐛

𝐜𝐲𝐜

+ 𝟐∑𝒂𝐛𝟐

𝐜𝐲𝐜

) + 𝟏𝟓𝒂𝟐𝐛𝟐𝐜𝟐 = 𝐓

)

 
 
 
 

 

⇒ 𝐋𝐇𝐒 𝐨𝐟 (∗) ≥ 𝟎 ⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 ∴∏(𝐤𝒂𝟐 + (𝐛 + 𝐜)𝟐)

𝐜𝐲𝐜

≥ 

((𝐤 − 𝟏)(𝒂 + 𝐛 + 𝐜)(𝒂𝐛 + 𝐛𝐜 + 𝐜𝒂) + (𝟏 − 𝟑𝐤)𝒂𝐛𝐜)
𝟐
 ∀ 𝐤 ≥ 𝟎, ′′ =′′  𝐢𝐟𝐟 𝐤 = 𝟎 

𝐨𝐫 𝒂 = 𝐛 = 𝐜 = 𝟎 𝐨𝐫 𝐤 =
∑ 𝒂𝟑𝐜𝐲𝐜 + 𝟑𝒂𝐛𝐜 + ∑ 𝒂𝟐𝐛𝐜𝐲𝐜 +∑ 𝒂𝐛𝟐𝐜𝐲𝐜

𝒂𝐛𝐜
 (𝒂𝐛𝐜 ≠ 𝟎) (𝐐𝐄𝐃) 
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2048. 𝐈𝐟 𝒂, 𝐛, 𝐜 > 0, 𝑘 ≥ 𝟏 𝐭𝐡𝐞𝐧 𝐩𝐫𝐨𝐯𝐞 𝐭𝐡𝒂𝐭 ∶ 

𝟏

𝒂𝐤(𝟏 + 𝒂𝟐)
+

𝟏

𝐛𝐤(𝟏 + 𝐛𝟐)
+

𝟏

𝐜𝐤(𝟏 + 𝐜𝟐)
+
(𝒂𝐛𝐜)𝐤+𝟏

𝟐
≥ 𝟐 

  Proposed by Dang Ngoc Minh-Vietnam 

Solution by Soumava Chakraborty-Kolkata-India 

∑
𝟏− 𝒂

𝒂(𝟏 + 𝒂𝟐)
𝐜𝐲𝐜

+
𝒂𝟐𝐛𝟐𝐜𝟐 − 𝒂𝐛𝐜

𝟐
=∑

𝟏+ 𝒂𝟐 − 𝒂𝟐 − 𝒂

𝒂(𝟏 + 𝒂𝟐)
𝐜𝐲𝐜

+
𝒂𝟐𝐛𝟐𝐜𝟐 − 𝒂𝐛𝐜

𝟐
 

=∑
𝟏

𝒂
𝐜𝐲𝐜

−∑
𝒂

𝟏 + 𝒂𝟐
𝐜𝐲𝐜

−∑
𝟏

𝟏 + 𝒂𝟐
𝐜𝐲𝐜

+
𝒂𝟐𝐛𝟐𝐜𝟐 − 𝒂𝐛𝐜

𝟐
≥

𝐀𝐌−𝐆𝐌
 

∑
𝟏

𝒂
𝐜𝐲𝐜

−∑
𝒂

𝟐𝒂
𝐜𝐲𝐜

−∑
𝟏

𝟐𝒂
𝐜𝐲𝐜

+
𝒂𝟐𝐛𝟐𝐜𝟐 − 𝒂𝐛𝐜

𝟐
=
𝟏

𝟐
(∑

𝟏

𝒂
𝐜𝐲𝐜

− 𝟑 + 𝒂𝟐𝐛𝟐𝐜𝟐 − 𝒂𝐛𝐜) 

≥
𝐀𝐌−𝐆𝐌 𝟏

𝟐
(
𝟑

√𝒂𝐛𝐜
𝟑 − 𝟑 + 𝒂𝟐𝐛𝟐𝐜𝟐 − 𝒂𝐛𝐜) =

𝟏

𝟐
(
𝐦𝟕 −𝐦𝟒 − 𝟑𝐦+ 𝟑

𝐦
) (∵ 𝐦 = √𝒂𝐛𝐜

𝟑
) 

=
(𝐦− 𝟏)𝟐(𝐦𝟓 + 𝟐𝐦𝟒 + 𝟑𝐦𝟑 + 𝟑𝐦𝟐 + 𝟑𝐦+ 𝟑)

𝟐𝐦
≥ 𝟎 

(∵ 𝒂, 𝐛, 𝐜 > 0 ⇒ 𝐦 = √𝒂𝐛𝐜
𝟑

> 0) ∴ ∑
𝟏 − 𝒂

𝒂(𝟏 + 𝒂𝟐)
𝐜𝐲𝐜

+
𝒂𝟐𝐛𝟐𝐜𝟐 − 𝒂𝐛𝐜

𝟐
≥ 𝟎 →①  

𝒂𝐧𝐝 𝐤 ≥ 𝟏 ⇒
𝟏

𝒂𝐤(𝟏 + 𝒂𝟐)
+

𝟏

𝐛𝐤(𝟏 + 𝐛𝟐)
+

𝟏

𝐜𝐤(𝟏 + 𝐜𝟐)
+
(𝒂𝐛𝐜)𝐤+𝟏

𝟐
≥

𝐁𝐞𝐫𝐧𝐨𝐮𝒍𝒍𝐢
 

∑((
𝟏

𝟏 + 𝒂𝟐
)(𝟏 + (

𝟏

𝒂
− 𝟏)𝐤))

𝐜𝐲𝐜

+ (
𝒂𝐛𝐜

𝟐
) (𝟏 + (𝒂𝐛𝐜 − 𝟏)𝐤) 

=∑
𝟏

𝟏 + 𝒂𝟐
𝐜𝐲𝐜

+
𝒂𝐛𝐜

𝟐
+ 𝐤(∑

𝟏 − 𝒂

𝒂(𝟏 + 𝒂𝟐)
𝐜𝐲𝐜

+
𝒂𝟐𝐛𝟐𝐜𝟐 − 𝒂𝐛𝐜

𝟐
) ≥

𝐤 ≥ 𝟏
𝒂𝐧𝐝
𝐯𝐢𝒂 ①

 

∑
𝟏

𝟏 + 𝒂𝟐
𝐜𝐲𝐜

+
𝒂𝐛𝐜

𝟐
+∑

𝟏 − 𝒂

𝒂(𝟏 + 𝒂𝟐)
𝐜𝐲𝐜

+
𝒂𝟐𝐛𝟐𝐜𝟐 − 𝒂𝐛𝐜

𝟐
=∑

𝟏

𝒂(𝟏 + 𝒂𝟐)
𝐜𝐲𝐜

+
𝒂𝟐𝐛𝟐𝐜𝟐

𝟐
 

=∑
𝟏+ 𝒂𝟐 − 𝒂𝟐

𝒂(𝟏 + 𝒂𝟐)
𝐜𝐲𝐜

+
𝒂𝟐𝐛𝟐𝐜𝟐

𝟐
=∑

𝟏

𝒂
𝐜𝐲𝐜

−∑
𝒂𝟐

𝒂(𝟏 + 𝒂𝟐)
𝐜𝐲𝐜

+
𝒂𝟐𝐛𝟐𝐜𝟐

𝟐
≥

𝐀𝐌−𝐆𝐌
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𝟑

√𝒂𝐛𝐜
𝟑 −∑

𝒂𝟐

𝟐𝒂𝟐
𝐜𝐲𝐜

+
𝒂𝟐𝐛𝟐𝐜𝟐

𝟐
=
𝟑

𝐦
−
𝟑

𝟐
+
𝐦𝟔

𝟐
≥
?
𝟐 ⇔ 𝐦𝟕 − 𝟕𝐦+ 𝟔 ≥

?
𝟎 

⇔ (𝐦− 𝟏)𝟐(𝐦𝟓 + 𝟐𝐦𝟒 + 𝟑𝐦𝟑 + 𝟒𝐦𝟐 + 𝟓𝐦+ 𝟔) ≥
?
𝟎 → 𝐭𝐫𝐮𝐞 

∴
𝟏

𝒂𝐤(𝟏 + 𝒂𝟐)
+

𝟏

𝐛𝐤(𝟏 + 𝐛𝟐)
+

𝟏

𝐜𝐤(𝟏 + 𝐜𝟐)
+
(𝒂𝐛𝐜)𝐤+𝟏

𝟐
≥ 𝟐 ∀ 𝒂, 𝐛, 𝐜 > 0, 𝑘 ≥ 𝟏, 

′′ =′′  𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 = 𝟏 (𝐐𝐄𝐃) 

2049. If 𝒂, 𝒃, 𝒄 > 0, 𝑎 + 𝑏 + 𝑐 = 3 then: 
 

𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 ≥ 𝒂𝒃𝒄(√𝒂 + √𝒃 + √𝒄) 

 
Proposed by Gheorghe Crăciun-Romania 

Solution by Tapas Das-India 
𝑳𝒆𝒎𝒎𝒂:  

𝑰𝒇 𝒂, 𝒃, 𝒄 > 0 & 𝑎 + 𝑏 + 𝑐 = 3 𝑡ℎ𝑒𝑛 √𝒂 + √𝒃 + √𝒄 ≥ 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂  
𝑷𝒓𝒐𝒐𝒇:  

𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 =
𝟏

𝟐
((𝒂 + 𝒃 + 𝒄)𝟐 − (𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐)) = 

=
𝟏

𝟐
(𝟑𝟐 − (𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐)) =

𝟏

𝟐
(𝟗 − (𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐))  

𝑾𝒆 𝒏𝒆𝒆𝒅 𝒕𝒐 𝒔𝒉𝒐𝒘:  

√𝒂 + √𝒃 + √𝒄 ≥
𝟏

𝟐
(𝟗 − (𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐)) 

 𝟐(√𝒂 + √𝒃 + √𝒄) + (𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐) ≥ 𝟗 𝒐𝒓,∑(√𝒂 + √𝒂 + 𝒂𝟐) ≥ 𝟗  

∑(√𝒂 + √𝒂 + 𝒂𝟐) ≥
𝑨𝑴−𝑮𝑴

 ∑𝟑𝒂 = 𝟑(𝒂 + 𝒃 + 𝒄) = 𝟑 × 𝟑 = 𝟗  

𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐

𝒂𝒃𝒄
=∑

𝒂

𝒃𝒄
=∑

(√𝒂)
𝟐

𝒃𝒄
≥

𝑩𝒆𝒓𝒈𝒔𝒕𝒓𝒐𝒎 (√𝒂 + √𝒃 + √𝒄)
𝟐

𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂
≥

𝑳𝒆𝒎𝒎𝒂
 

≥
(√𝒂 + √𝒃 + √𝒄)

𝟐

(√𝒂 + √𝒃 + √𝒄)
= (√𝒂 + √𝒃 + √𝒄)  

𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 ≥ 𝒂𝒃𝒄(√𝒂 + √𝒃 + √𝒄) 

Equality  holds for  a=b=c=1. 
 

2050. If 𝒂, 𝒃, 𝒄, 𝒅 > 0 then: 

𝒂𝟐 − 𝒃𝒄 + 𝒄𝒅

𝒃𝒄
+
𝒃𝟐 − 𝒄𝒅 + 𝒃𝒄

𝒄𝒅
+
𝒄𝟐 − 𝒂𝒅 + 𝒃𝒂

𝒂𝒅
+
𝒅𝟐 − 𝒂𝒃 + 𝒂𝒅

𝒂𝒃
≥ 𝟒  

Proposed by Gheorghe Crăciun-Romania 
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Solution by Tapas Das-India 
𝒂𝟐 − 𝒃𝒄 + 𝒄𝒅

𝒃𝒄
=
𝒂𝟐

𝒃𝒄
−
𝒃𝒄

𝒃𝒄
+
𝒄𝒅

𝒃𝒄
=
𝒂𝟐

𝒃𝒄
− 𝟏 +

𝒅

𝒃
 

𝒂𝟐 − 𝒃𝒄 + 𝒄𝒅

𝒃𝒄
+
𝒃𝟐 − 𝒄𝒅 + 𝒃𝒄

𝒄𝒅
+
𝒄𝟐 − 𝒂𝒅 + 𝒃𝒂

𝒂𝒅
+
𝒅𝟐 − 𝒂𝒃 + 𝒂𝒅

𝒂𝒃
=∑

𝒂𝟐 − 𝒃𝒄 + 𝒄𝒅

𝒃𝒄
 

=∑
𝒂𝟐

𝒃𝒄
+∑

𝒅

𝒃
− 𝟒 ≥

𝑨𝑴−𝑮𝑴
 𝟒√

𝒂𝟐𝒃𝟐𝒅𝟐𝒄𝟐

𝒂𝟐𝒃𝟐𝒅𝟐𝒄𝟐

𝟒

+ 𝟒√
𝒂𝒃𝒄𝒅

𝒂𝒃𝒄𝒅

𝟒

− 𝟒 = 𝟒 

Equality holds for  a=b=c=d. 
 

2051. If 𝟎 < 𝑎, 𝑏, 𝑐 < 1 then: 
 

𝟐𝒂 + 𝒂𝒃𝒄

𝒃𝒄 + 𝟏
+
𝟐𝒃 + 𝒂𝒃𝒄

𝒂𝒄 + 𝟏
+
𝟐𝒄 + 𝒂𝒃𝒄

𝒂𝒃 + 𝟏
< 3 + 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 

 
Proposed by Gheorghe Crăciun-Romania 

Solution by Tapas Das-India 
𝟎 < 𝑎, 𝑏, 𝑐 < 1 𝑠𝑜 𝑎 + 𝑏 + 𝑐 < 3 (1) 
𝟐𝒂 + 𝒂𝒃𝒄

𝒃𝒄 + 𝟏
=

𝟐𝒂

𝟏 + 𝒃𝒄
+

𝒂𝒃𝒄

𝟏 + 𝒃𝒄
 

 𝒔𝒊𝒏𝒄𝒆 𝒃𝒄 > 0 𝑠𝑜 
𝟐𝒂

𝟏 + 𝒃𝒄
< 2𝒂 𝒂𝒏𝒅

𝒂𝒃𝒄

𝟏 + 𝒃𝒄
< 𝑎𝑏𝑐 < 𝑎𝑏  

( 𝒂𝒔 𝒂𝒃𝒄 − 𝒂𝒃 = 𝒂𝒃(𝒄 − 𝟏) <
𝒄<1

𝟎 ⇒ 𝒂𝒃𝒄 < 𝑎𝑏)  

𝟐𝒂 + 𝒂𝒃𝒄

𝒃𝒄 + 𝟏
=

𝟐𝒂

𝟏 + 𝒃𝒄
+

𝒂𝒃𝒄

𝟏 + 𝒃𝒄
< 2𝒂+ 𝒂𝒃  

𝟐𝒂 + 𝒂𝒃𝒄

𝒃𝒄 + 𝟏
+
𝟐𝒃 + 𝒂𝒃𝒄

𝒂𝒄 + 𝟏
+
𝟐𝒄 + 𝒂𝒃𝒄

𝒂𝒃 + 𝟏
= 

=∑
𝟐𝒂+ 𝒂𝒃𝒄

𝒃𝒄 + 𝟏
<∑𝟐𝒂 +∑𝒂𝒃 <

(𝟏)

𝟐 × 𝟑 + 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 = 𝟔 + 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 

 
2052. If 𝒂, 𝒃, 𝒄 > 0 then: 

∑(𝒃+ 𝒄)(𝒂𝟐 + 𝒃𝟐 + 𝒂𝒃)

𝒄𝒚𝒄

≥
𝟗

𝟒
∏(𝒂 + 𝒃)

𝒄𝒚𝒄

 

Proposed by Crăciun Gheorghe-Romania 
Solution by Tapas Das-India 
𝑳𝒆𝒎𝒎𝒂: 

 ∀ 𝒙, 𝒚 > 0 , 𝒙𝟐 + 𝒙𝒚 + 𝒚𝟐 ≥
𝟑

𝟒
(𝒙 + 𝒚)𝟐 

 𝑷𝒓𝒐𝒐𝒇:  
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𝒙𝟐 + 𝒚𝟐 + 𝒙𝒚 = (𝒙 + 𝒚)𝟐 − 𝒙𝒚 ≥
𝑨𝑴−𝑮𝑴

 (𝒙 + 𝒚)𝟐 −
(𝒙 + 𝒚)𝟐

𝟒
=
𝟑

𝟒
(𝒙 + 𝒚)𝟐 

∑ (𝒃 + 𝒄)(𝒂𝟐 + 𝒃𝟐 + 𝒂𝒃) ≥
𝑳𝒆𝒎𝒎𝒂

 ∑(𝒃 + 𝒄)
𝟑

𝟒
(𝒂 + 𝒃)𝟐 = 

=
𝟑

𝟒
∑(𝒂 + 𝒃)𝟐(𝒃 + 𝒄) ≥

𝑨𝑴−𝑮𝑴 𝟗

𝟒
√(𝒂 + 𝒃)𝟑(𝒃 + 𝒄)𝟑(𝒄 + 𝒂)𝟑
𝟑

= 

=
𝟗

𝟒
(𝒂 + 𝒃)(𝒃 + 𝒄)(𝒄 + 𝒂)  

Equality holds for  a=b=c. 

2053. If 𝒙, 𝒚, 𝒛 > 0 then: 
 

𝟒(𝒙 + 𝒚 + 𝒛)(𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 + 𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙) ≥ 𝟗(𝒙 + 𝒚)(𝒚 + 𝒛)(𝒛 + 𝒙) 
 

Proposed by Gheorghe Crăciun-Romania 
Solution by Tapas Das-India 
 

𝟒(𝒙 + 𝒚 + 𝒛)(𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 + 𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙) = 
= (𝟐𝒙 + 𝟐𝒚 + 𝟐𝒛)(𝟐𝒙𝟐 + 𝟐𝒚𝟐 + 𝟐𝒛𝟐 + 𝟐𝒙𝒚 + 𝟐𝒚𝒛 + 𝟐𝒛𝒙) = 

= ((𝒙 + 𝒚) + (𝒚 + 𝒛) + (𝒛 + 𝒙)) ((𝒙 + 𝒚)𝟐 + (𝒚 + 𝒛)𝟐 + (𝒛 + 𝒙)𝟐) ≥ 

≥
𝑨𝑴−𝑮𝑴

𝟑 √(𝒙 + 𝒚)(𝒚 + 𝒛)(𝒛 + 𝒙)
𝟑

× 𝟑√(𝒙 + 𝒚)𝟐(𝒚 + 𝒛)𝟐(𝒛 + 𝒙)𝟐
𝟑

= 
= 𝟗(𝒙 + 𝒚)(𝒚 + 𝒛)(𝒛 + 𝒙)  

Equality holds for  x=y=z. 

 

2054. 𝐈𝐟 𝒙, 𝐲, 𝐳 > 0,
𝟏

𝒙𝟐
+

𝟏

𝐲𝟐
+
𝟏

𝐳
≤ 𝟑𝐦𝟐𝒂𝐧𝐝 𝐤, 𝐧 ∈ ℕ∗,𝐦 > 0 𝑡ℎ𝑒𝑛 ∶ 

∑
𝟏

√(𝛌𝟐 + 𝟏)𝒙𝟐 + 𝟐(𝛌𝐧 − 𝟏)𝒙𝐲 + (𝐧𝟐 + 𝟏)𝐲𝟐
𝐜𝐲𝐜

≤
𝟑𝐦

𝛌 + 𝐧
 

  Proposed by Marin Chirciu-Romania 

Solution by Soumava Chakraborty-Kolkata-India 

∑
𝟏

√(𝛌𝟐 + 𝟏)𝒙𝟐 + 𝟐(𝛌𝐧 − 𝟏)𝒙𝐲 + (𝐧𝟐 + 𝟏)𝐲𝟐
𝐜𝐲𝐜

= 

=∑
𝟏

√(𝒙 − 𝐲)𝟐 + (𝛌𝒙 + 𝐧𝐲)𝟐
𝐜𝐲𝐜

≤∑
𝟏

𝛌𝒙 + 𝐧𝐲
𝐜𝐲𝐜

≤
𝐖𝐞𝐢𝐠𝐡𝐭𝐞𝐝 𝐀𝐌−𝐖𝐞𝐢𝐠𝐡𝐭𝐞𝐝 𝐇𝐌

∑

𝛌
𝒙+

𝐧
𝐲

(𝛌 + 𝐧)𝟐
𝐜𝐲𝐜
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=
𝟏

(𝛌 + 𝐧)𝟐
. (𝛌∑

𝟏

𝒙
𝐜𝐲𝐜

+ 𝐧∑
𝟏

𝒙
𝐜𝐲𝐜

) ≤
𝐂𝐁𝐒 𝛌 + 𝐧

(𝛌 + 𝐧)𝟐
. √𝟑∑

𝟏

𝒙𝟐
𝐜𝐲𝐜

≤
𝟏

𝛌 + 𝐧
.√𝟑. 𝟑𝐦𝟐 =

𝟑𝐦

𝛌 + 𝐧
  

(∵ 𝐦 > 0) ∴ ∑
𝟏

√(𝛌𝟐 + 𝟏)𝒙𝟐 + 𝟐(𝛌𝐧 − 𝟏)𝒙𝐲 + (𝐧𝟐 + 𝟏)𝐲𝟐
𝐜𝐲𝐜

≤
𝟑𝐦

𝛌 + 𝐧
  

∀ 𝒙, 𝐲, 𝐳 > 0│
𝟏

𝒙𝟐
+
𝟏

𝐲𝟐
+
𝟏

𝐳
≤ 𝟑𝐦𝟐 ∧  𝐤, 𝐧 ∈ ℕ∗, 𝐦 > 0, ′′ =′′  𝐢𝐟𝐟 𝒙 = 𝐲 = 𝐳 (𝐐𝐄𝐃) 

 

2055. 𝐈𝐟 𝒂, 𝐛, 𝐜 > 0 𝒂𝐧𝐝 𝛌 ≥ 𝟎 𝐭𝐡𝐞𝐧 ∶ 

∑
𝐛𝟐𝐜𝟐

𝒂𝟑(𝐛 + 𝛌𝐜)
𝐜𝐲𝐜

≥
𝟑

𝛌 + 𝟏
 

  Proposed by Marin Chirciu-Romania 

Solution by Soumava Chakraborty-Kolkata-India 

∑
𝐛𝟐𝐜𝟐

𝒂𝟑(𝐛 + 𝛌𝐜)
𝐜𝐲𝐜

=∑
𝐛𝟒𝐜𝟒

𝒂𝟑𝐛𝟐𝐜𝟐(𝐛 + 𝛌𝐜)
𝐜𝐲𝐜

≥
𝐁𝐞𝐫𝐠𝐬𝐭𝐫𝐨𝐦 (∑ 𝒂𝟐𝐛𝟐𝐜𝐲𝐜 )

𝟐

𝒂𝟐𝐛𝟐𝐜𝟐(𝛌 + 𝟏)(∑ 𝒂𝐛𝐜𝐲𝐜 )
≥ 

𝟑𝒂𝟐𝐛𝟐𝐜𝟐(∑ 𝒂𝟐𝐜𝐲𝐜 )

𝒂𝟐𝐛𝟐𝐜𝟐(𝛌 + 𝟏)(∑ 𝒂𝐛𝐜𝐲𝐜 )
≥

𝟑(∑ 𝒂𝐛𝐜𝐲𝐜 )

(𝛌 + 𝟏)(∑ 𝒂𝐛𝐜𝐲𝐜 )
=

𝟑

𝛌 + 𝟏
 ∀ 𝒂, 𝐛, 𝐜 > 0 ∧ 𝜆 ≥ 0, 

 
′′ =′′  𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 (𝐐𝐄𝐃) 

 

2056. 𝐈𝐟 𝒂, 𝐛 > 0, 𝒂 + 𝐛 = 𝟐 𝒂𝐧𝐝 𝛌 ≥ 𝟐 𝐭𝐡𝐞𝐧 ∶ 

𝟏

𝟏 − 𝒂 + 𝛌𝒂𝟐
+

𝟏

𝟏 − 𝐛 + 𝛌𝐛𝟐
≥
𝟐

𝛌
 

  Proposed by Marin Chirciu-Romania 

Solution by Soumava Chakraborty-Kolkata-India 

𝟐 = 𝒂 + 𝐛 ≥
𝐀𝐌−𝐆𝐌

𝟐. √𝒂𝐛 ⇒ 𝒂𝐛 ≤ 𝟏 →① 

𝐍𝐨𝐰,
𝟏

𝟏 − 𝒂 + 𝛌𝒂𝟐
+

𝟏

𝟏 − 𝐛 + 𝛌𝐛𝟐
≥
? 𝟐

𝛌
⇔

𝛌𝒂𝟐 + 𝛌𝐛𝟐

(𝟏 − 𝒂 + 𝛌𝒂𝟐)(𝟏 − 𝐛 + 𝛌𝐛𝟐)
≥
? 𝟐

𝛌
  

(∵ 𝒂 + 𝐛 = 𝟐) ⇔ 𝛌𝟐(𝒂𝟐 + 𝐛𝟐 − 𝟐𝒂𝟐𝐛𝟐) + 𝟐𝛌(𝟐𝒂𝐛 − 𝒂𝟐 − 𝐛𝟐) + 𝟐 − 𝟐𝒂𝐛 ≥
?
⏟
(∗)

𝟎  

(∵ 𝒂 + 𝐛 = 𝟐) 𝒂𝐧𝐝 𝐢𝐧𝐝𝐞𝐞𝐝, 𝐯𝐢𝒂 ①,𝐋𝐇𝐒 𝐨𝐟 (∗) ≥ 
𝛌𝟐(𝒂𝟐 + 𝐛𝟐 − 𝟐𝒂𝐛) + 𝟐𝛌(𝟐𝒂𝐛 − 𝒂𝟐 − 𝐛𝟐) + 𝟐 − 𝟐 = 𝛌(𝛌 − 𝟐)(𝒂 − 𝐛)𝟐 ≥ 𝟎(∵ 𝛌 ≥ 𝟐) 
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⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 ∴
𝟏

𝟏 − 𝒂 + 𝛌𝒂𝟐
+

𝟏

𝟏 − 𝐛 + 𝛌𝐛𝟐
≥
𝟐

𝛌
 ∀ 𝒂, 𝐛 > 0│𝒂+ 𝐛 = 𝟐 𝒂𝐧𝐝 𝛌 ≥ 𝟐, 

 
′′ =′′  𝐢𝐟𝐟 𝒂 = 𝐛 = 𝟏 (𝐐𝐄𝐃) 

 

2057. If 𝒂, 𝒃, 𝒄 > 0, 𝒂𝟒 + 𝒃𝟒 + 𝒄𝟒 = 𝟑 then: 

𝟏

𝒂𝟐𝒃𝒄
+

𝝀𝟐

𝒃𝟐𝒂𝒄
+
(𝝀 + 𝟏)𝟐

𝒄𝟐𝒂𝒃
≥

𝟒(𝝀 + 𝟏)𝟐𝒂𝟒𝒃𝟒𝒄𝟒

𝒂𝟒𝒃𝟒 + 𝒃𝟒𝒄𝟒 + 𝒄𝟒𝒂𝟒
 

 
Proposed by Marin Chirciu-Romania 

Solution by Tapas Das-India 

𝒂𝟒 + 𝒃𝟒 + 𝒄𝟒 =
𝒂𝟒

𝟏𝟑
+
𝒃𝟒

𝟏𝟑
+
𝒄𝟒

𝟏𝟑
≥

𝑹𝒂𝒅𝒐𝒏 𝟏

𝟐𝟕
(𝒂 + 𝒃 + 𝒄)𝟒 = 

= (
𝒂+ 𝒃 + 𝒄

𝟑
)
𝟑

(𝒂 + 𝒃 + 𝒄) ≥
𝑨𝑴−𝑮𝑴

 𝒂𝒃𝒄(𝒂 + 𝒃 + 𝒄) = 𝒂𝟐𝒃𝒄 + 𝒃𝟐𝒄𝒂 + 𝒄𝟐𝒂𝒃 (𝟏) 

𝒂𝟒𝒃𝟒 + 𝒃𝟒𝒄𝟒 + 𝒄𝟒𝒂𝟒 = 𝒂𝟒𝒃𝟒𝒄𝟒 (
𝟏

𝒂𝟒
+
𝟏

𝒃𝟒
+
𝟏

𝒄𝟒
) ≥
𝑩𝒆𝒓𝒈𝒔𝒕𝒓𝒐𝒎

 𝒂𝟒𝒃𝟒𝒄𝟒.
𝟗

𝒂𝟒 + 𝒃𝟒 + 𝒄𝟒
 (𝟐) 

𝟏

𝒂𝟐𝒃𝒄
+

𝝀𝟐

𝒃𝟐𝒂𝒄
+
(𝝀 + 𝟏)𝟐

𝒄𝟐𝒂𝒃
≥

𝑩𝒆𝒓𝒈𝒔𝒕𝒓𝒐𝒎 (𝟏 + 𝝀 + 𝝀 + 𝟏)𝟐

𝒂𝟐𝒃𝒄 + 𝒃𝟐𝒄𝒂 + 𝒄𝟐𝒂𝒃 
≥
(𝟏)

 
𝟒(𝝀 + 𝟏)𝟐

𝒂𝟒 + 𝒃𝟒 + 𝒄𝟒
 (𝟑) 

(𝒂𝟒𝒃𝟒 + 𝒃𝟒𝒄𝟒 + 𝒄𝟒𝒂𝟒) (
𝟏

𝒂𝟐𝒃𝒄
+

𝝀𝟐

𝒃𝟐𝒂𝒄
+
(𝝀 + 𝟏)𝟐

𝒄𝟐𝒂𝒃
) ≥
(𝟐)&(𝟑)

 

≥  𝒂𝟒𝒃𝟒𝒄𝟒.
𝟗

𝒂𝟒 + 𝒃𝟒 + 𝒄𝟒
.
𝟒(𝝀 + 𝟏)𝟐

𝒂𝟒 + 𝒃𝟒 + 𝒄𝟒
=

𝒂𝟒+𝒃𝟒+𝒄𝟒=𝟑 
 𝒂𝟒𝒃𝟒𝒄𝟒. 𝟒(𝝀 + 𝟏)𝟐 

 
𝟏

𝒂𝟐𝒃𝒄
+

𝝀𝟐

𝒃𝟐𝒂𝒄
+
(𝝀 + 𝟏)𝟐

𝒄𝟐𝒂𝒃
≥

𝟒(𝝀 + 𝟏)𝟐𝒂𝟒𝒃𝟒𝒄𝟒

𝒂𝟒𝒃𝟒 + 𝒃𝟒𝒄𝟒 + 𝒄𝟒𝒂𝟒
 

 
Equality holds for  a=b= c=1. 

 

2058. If 𝒂, 𝒃, 𝒄 > 0, 𝑎 + 𝑏 + 𝑐 = 3 then: 

∑
𝒂𝒏+𝟏 + 𝒃𝒏 + 𝒄

𝒂𝒏+𝟐 + 𝒃𝒏+𝟏 + 𝒄𝟐
≤ 𝟑 , 𝒏 ∈ 𝑵 

Proposed by Marin Chirciu-Romania 
Solution by Tapas Das-India 

𝒂𝒏+𝟐 + 𝒃𝒏+𝟏 + 𝒄𝟐 = 𝒂𝒏+𝟏. 𝒂 + 𝒃𝒏 . 𝒃 + 𝒄. 𝒄 ≥
𝑪𝒉𝒆𝒃𝒚𝒔𝒉𝒆𝒗 𝟏

𝟑
(𝒂 + 𝒃 + 𝒄)(𝒂𝒏+𝟏 + 𝒃𝒏 + 𝒄) 

∑
𝒂𝒏+𝟏 + 𝒃𝒏 + 𝒄

𝒂𝒏+𝟐 + 𝒃𝒏+𝟏 + 𝒄𝟐
≤ ∑

𝒂𝒏+𝟏 + 𝒃𝒏 + 𝒄

𝟏
𝟑
(𝒂 + 𝒃 + 𝒄)(𝒂𝒏+𝟏 + 𝒃𝒏 + 𝒄)

= 𝟑∑
𝟏

𝒂 + 𝒃 + 𝒄
=

𝒂+𝒃+𝒄=𝟑
𝟑 

 
Equality holds for  a=b=c=1. 
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2059. If 𝐚, 𝐛, 𝐜 > 3, 𝑎𝑏𝑐 = 64 then: 

∑
𝒂𝒏

𝒂 − 𝟑
≥ 𝟑. 𝟒𝒏 

Proposed by Marin Chirciu-Romania 
Solution by Tapas Das-India 

𝑺𝒊𝒏𝒄𝒆 𝒂, 𝒃, 𝒄 > 3 , 𝑠𝑜 𝑤𝑒 𝑡𝑎𝑘𝑒 𝑎 = 𝑥 + 3, 𝑏 = 𝑦 + 3, 𝑧 = 𝑐 + 3 , 𝑥, 𝑦, 𝑧 > 0 
𝒂𝒃𝒄 = 𝟔𝟒 ⇒ (𝒙 + 𝟑)(𝒚 + 𝟑)(𝒛 + 𝟑) = 𝟔𝟒 (𝟏) 

(𝒙 + 𝟑)(𝒚 + 𝟑)(𝒛 + 𝟑) = 𝟔𝟒 
(𝒙 + 𝟏 + 𝟏 + 𝟏)(𝒚 + 𝟏 + 𝟏 + 𝟏)(𝒛 + 𝟏 + 𝟏 + 𝟏) = 𝟔𝟒 

𝟒√𝒙
𝟒 . 𝟒√𝒚

𝟒 . 𝟒√𝒛
𝟒 . ≤

𝑨𝑴−𝑮𝑴
𝟔𝟒 𝒐𝒓 𝒙𝒚𝒛 ≤ 𝟏 (𝟐) 

∑
𝒂𝒏

𝒂 − 𝟑
=∑

(𝒙 + 𝟑)𝒏

𝒙
≥

𝑨𝑴−𝑮𝑴
𝟑 √

((𝒙 + 𝟑)(𝒚 + 𝟑)(𝒛 + 𝟑))
𝒏

𝒙𝒚𝒛
 

𝟑

≥
(𝟐)&(𝟏)

𝟑. √𝟔𝟒𝒏
𝟑

= 𝟑. 𝟒𝒏 

Equality holds for  x=y=z=1 or a=b=c=4. 

 
2060. If 𝒂, 𝒃, 𝒄 > 0 , 𝜆 ≥ 1  then: 

∑
𝒂

𝒂+ 𝝀(𝒃 + 𝒄)
≥

𝟑

𝟐𝝀 + 𝟏
 

Proposed by Marin Chirciu-Romania 
Solution by Tapas Das-India 

𝑳𝒆𝒕 𝒎 =∑𝒂𝟐 , 𝒏 =∑𝒂𝒃  𝒕𝒉𝒆𝒏 𝒎 ≥ 𝒏 (𝟏) (𝒂 + 𝒃 + 𝒄)𝟐 = 𝒎+ 𝟐𝒏 (𝟐) 

∑
𝒂

𝒂+ 𝝀(𝒃 + 𝒄)
=∑

𝒂𝟐

𝒂𝟐 + 𝝀(𝒂𝒃 + 𝒂𝒄)
≥

𝑩𝒆𝒓𝒈𝒔𝒕𝒓𝒐𝒎 (𝒂 + 𝒃 + 𝒄)𝟐

∑𝒂𝟐 + 𝟐𝝀 ∑𝒂𝒃 
=
(𝟏) 𝒎+ 𝟐𝒏

𝒎 + 𝟐𝝀 𝒏
 

 
𝑾𝒆 𝒏𝒆𝒆𝒅 𝒕𝒐 𝒔𝒉𝒐𝒘: 

𝒎+𝟐𝒏

𝒎+ 𝟐𝝀 𝒏
≥

𝟑

𝟐𝝀 + 𝟏
 𝒐𝒓, 𝟐𝝀𝒎+ 𝟐𝒏 ≥ 𝟐𝒎 + 𝟐𝝀𝒏 𝒐𝒓, (𝝀 − 𝟏)(𝒎− 𝒏) ≥ 𝟎 

 

𝒕𝒓𝒖𝒆 𝒂𝒔 𝝀 ≥ 𝟏 𝒂𝒏𝒅 𝒎 ≥ 𝒏 (𝒃𝒚 (𝟏)) 

 
Equality holds for  a=b=c. 

 

2061. 𝐋𝐞𝐭 𝐧 ≥ 𝟐 𝒂𝐧𝐝 𝒙𝟏, 𝒙𝟐, … , 𝒙𝐧 𝐛𝐞 𝐩𝐨𝐬𝐢𝐭𝐢𝐯𝐞 𝐫𝐞𝒂𝒍 𝐧𝐮𝐦𝐛𝐞𝐫𝐬. 𝐏𝐫𝐨𝐯𝐞 𝐭𝐡𝒂𝐭 ∶ 

√∑ (
𝟏

𝒙𝐢
)
𝟐𝐧

𝐢=𝟏
<∑

𝟏

𝒙𝐢

𝐧

𝐢=𝟏
−

𝟏

∑ 𝒙𝐢
𝐧
𝐢=𝟏

 

  Proposed by Mehmet Șahin-Turkiye 
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Solution by Soumava Chakraborty-Kolkata-India 

√∑ (
𝟏

𝒙𝐢
)
𝟐𝐧

𝐢=𝟏
+

𝟏

∑ 𝒙𝐢
𝐧
𝐢=𝟏

< √(∑
𝟏

𝒙𝐢

𝐧

𝐢=𝟏
)
𝟐

+
𝟏

∑ 𝒙𝐢
𝐧
𝐢=𝟏

=
𝟐

𝐧𝟐
.
𝐧𝟐

∑ 𝒙𝐢
𝐧
𝐢=𝟏

≤ 

 

≤
𝐑𝐞𝐯𝐞𝐫𝐬𝐞 𝐁𝐞𝐫𝐠𝐬𝐭𝐫𝐨𝐦 𝟐

𝐧𝟐
.∑

𝟏

𝒙𝐢

𝐧

𝐢=𝟏
≤
𝐧 ≥ 𝟐 𝟐

𝟒
.∑

𝟏

𝒙𝐢

𝐧

𝐢=𝟏
<∑

𝟏

𝒙𝐢

𝐧

𝐢=𝟏
 

 

∴ √∑ (
𝟏

𝒙𝐢
)
𝟐𝐧

𝐢=𝟏
<∑

𝟏

𝒙𝐢

𝐧

𝐢=𝟏
−

𝟏

∑ 𝒙𝐢
𝐧
𝐢=𝟏

 ∀ 𝐧 ≥ 𝟐 𝒂𝐧𝐝 ∀ 𝒙𝟏, 𝒙𝟐, … , 𝒙𝐧 > 0 (𝐐𝐄𝐃) 

 

2062. 𝐈𝐟 𝒂𝐤 > 𝟎 𝒕𝒉𝒆𝒏 𝒑𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝐭 ∶ 

∑
𝟖𝒂𝟏

𝟑

(𝒂𝟏 + 𝒂𝟐)(√𝟓𝒂𝟏 + 𝒂𝟐)𝐜𝐲𝐜

≥ (√𝟓 − 𝟏)∑𝒂𝐤

𝐧

𝐤=𝟏

 

  Proposed by Neculai Stanciu-Romania 

Solution by Soumava Chakraborty-Kolkata-India 

𝟖𝒂𝟏
𝟑

(𝒂𝟏 + 𝒂𝟐)(√𝟓𝒂𝟏 + 𝒂𝟐)
− (√𝟓𝒂𝟏 − 𝒂𝟐) = 

=
𝟖𝒂𝟏

𝟑 − (𝒂𝟏 + 𝒂𝟐)(√𝟓𝒂𝟏 + 𝒂𝟐)(√𝟓𝒂𝟏 − 𝒂𝟐)

(𝒂𝟏 + 𝒂𝟐)(√𝟓𝒂𝟏 + 𝒂𝟐)
=
𝟖𝒂𝟏

𝟑 − (𝒂𝟏 + 𝒂𝟐)(𝟓𝒂𝟏
𝟐 − 𝒂𝟐

𝟐)

(𝒂𝟏 + 𝒂𝟐)(√𝟓𝒂𝟏 + 𝒂𝟐)
 

=
𝟑𝒂𝟏

𝟑 − 𝟓𝒂𝟏
𝟐𝒂𝟐 + 𝒂𝟏𝒂𝟐

𝟐 + 𝒂𝟐
𝟑

(𝒂𝟏 + 𝒂𝟐)(√𝟓𝒂𝟏 + 𝒂𝟐)
=
(𝒂𝟏 − 𝒂𝟐)

𝟐(𝟑𝒂𝟏 + 𝒂𝟐)

(𝒂𝟏 + 𝒂𝟐)(√𝟓𝒂𝟏 + 𝒂𝟐)
≥ 𝟎 

∴
𝟖𝒂𝟏

𝟑

(𝒂𝟏 + 𝒂𝟐)(√𝟓𝒂𝟏 + 𝒂𝟐)
≥ √𝟓𝒂𝟏 − 𝒂𝟐 𝒂𝐧𝐝 𝒂𝐧𝒂𝒍𝐨𝐠𝐬 

⇒∑
𝟖𝒂𝟏

𝟑

(𝒂𝟏 + 𝒂𝟐)(√𝟓𝒂𝟏 + 𝒂𝟐)𝐜𝐲𝐜

≥∑(√𝟓𝒂𝟏 − 𝒂𝟐)

𝐜𝐲𝐜

= √𝟓∑𝒂𝐤

𝐧

𝐤=𝟏

−∑𝒂𝐤

𝐧

𝐤=𝟏

 

= (√𝟓 − 𝟏)∑𝒂𝐤

𝐧

𝐤=𝟏

∴ ∑
𝟖𝒂𝟏

𝟑

(𝒂𝟏 + 𝒂𝟐)(√𝟓𝒂𝟏 + 𝒂𝟐)𝐜𝐲𝐜

≥ (√𝟓 − 𝟏)∑𝒂𝐤

𝐧

𝐤=𝟏

 

∀ 𝒂𝐤 > 0, 
 

𝐤 = 𝟏, 𝐧̅̅ ̅̅ ̅, ′′ =′′  𝐢𝐟𝐟 𝒂𝟏 = 𝒂𝟐 = ⋯𝒂𝐧 (𝐐𝐄𝐃) 
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2063. 𝐈𝐟 𝒂, 𝐛, 𝐜 > 0 𝑡ℎ𝑒𝑛 𝑝𝑟𝑜𝑣𝑒 𝑡ℎ𝑎𝐭 ∶ 

(∑𝒂𝟖

𝐜𝐲𝐜

)(∑
𝟏

𝒂𝟖
𝐜𝐲𝐜

) ≥ (∑𝒂

𝐜𝐲𝐜

)(∑
𝟏

𝒂
𝐜𝐲𝐜

) 

  Proposed by Mihaly Bencze, Neculai Stanciu-Romania 

Solution by Soumava Chakraborty-Kolkata-India 

(∑𝒂𝟖

𝐜𝐲𝐜

)(∑
𝟏

𝒂𝟖
𝐜𝐲𝐜

)  ≥
?
(∑𝒂

𝐜𝐲𝐜

)(∑
𝟏

𝒂
𝐜𝐲𝐜

) 

⇔ 𝟑 +∑
𝒂𝟖

𝐛𝟖
𝐜𝐲𝐜

+∑
𝐛𝟖

𝒂𝟖
𝐜𝐲𝐜

≥
?
𝟑 +∑

𝒂

𝐛
𝐜𝐲𝐜

+∑
𝐛

𝒂
𝐜𝐲𝐜

⇔∑
𝒂𝟖

𝐛𝟖
𝐜𝐲𝐜

+∑
𝐛𝟖

𝒂𝟖
𝐜𝐲𝐜

≥
?
∑

𝒂

𝐛
𝐜𝐲𝐜

+∑
𝐛

𝒂
𝐜𝐲𝐜

→① 

𝐍𝐨𝐰,∑
𝒂𝟖

𝐛𝟖
𝐜𝐲𝐜

+∑
𝐛𝟖

𝒂𝟖
𝐜𝐲𝐜

≥
𝐇𝐨𝒍𝐝𝐞𝐫 𝟏

𝟑𝟕
. (∑

𝒂

𝐛
𝐜𝐲𝐜

)

𝟖

+
𝟏

𝟑𝟕
. (∑

𝐛

𝒂
𝐜𝐲𝐜

)

𝟖

≥
𝐀𝐌−𝐆𝐌

 

𝟏

𝟑𝟕
. (∑

𝒂

𝐛
𝐜𝐲𝐜

)(𝟑. √
𝒂

𝐛
.
𝐛

𝐜
.
𝐜

𝒂

𝟑

)

𝟕

+
𝟏

𝟑𝟕
. (∑

𝐛

𝒂
𝐜𝐲𝐜

)(𝟑. √
𝐛

𝒂
.
𝒂

𝐜
.
𝐜

𝐛

𝟑

)

𝟕

 

=
𝟏

𝟑𝟕
. (∑

𝒂

𝐛
𝐜𝐲𝐜

) . 𝟑𝟕 +
𝟏

𝟑𝟕
. (∑

𝐛

𝒂
𝐜𝐲𝐜

) . 𝟑𝟕 =∑
𝒂

𝐛
𝐜𝐲𝐜

+∑
𝐛

𝒂
𝐜𝐲𝐜

⇒① 𝐢𝐬 𝐭𝐫𝐮𝐞 

∴ (∑𝒂𝟖

𝐜𝐲𝐜

)(∑
𝟏

𝒂𝟖
𝐜𝐲𝐜

)  ≥ (∑𝒂

𝐜𝐲𝐜

)(∑
𝟏

𝒂
𝐜𝐲𝐜

) ∀ 𝒂, 𝐛, 𝐜 > 0, ′′ =′′  𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 (𝐐𝐄𝐃) 

 

2064. 𝐈𝐟 𝒂, 𝐛, 𝐜 > 0 𝒂𝐧𝐝 𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐 = 𝟑 𝐭𝐡𝐞𝐧 𝐩𝐫𝐨𝐯𝐞 𝐭𝐡𝒂𝐭 ∶ 

𝒂𝟏𝟐 + 𝐛𝟏𝟐 + 𝐜𝟏𝟐 + (𝒂𝐛𝐜)𝟐(𝒂𝟑𝐛𝟑 + 𝐛𝟑𝐜𝟑 + 𝐜𝟑𝒂𝟑) ≥ 𝟔 

  Proposed by Nguyen Hung Cuong-Vietnam 

Solution by Soumava Chakraborty-Kolkata-India 

∑𝒂𝟏𝟐

𝐜𝐲𝐜

+ (𝒂𝐛𝐜)𝟐 (∑𝒂𝟑𝐛𝟑

𝐜𝐲𝐜

) ≥
𝐀𝐌−𝐆𝐌

∑𝒂𝟏𝟐

𝐜𝐲𝐜

+ 𝟑(𝒂𝐛𝐜)𝟒 ≥
?
𝟔 = 
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𝟔

𝟕𝟐𝟗
. (∑𝒂𝟐

𝐜𝐲𝐜

)

𝟔

⇔ 𝟐𝟒𝟑∑𝒙𝟔

𝐜𝐲𝐜

+ 𝟕𝟐𝟗𝒙𝟐𝐲𝟐𝐳𝟐 ≥
?
⏟
(∗)

𝟐(∑𝒙

𝐜𝐲𝐜

)

𝟔

(𝒂𝟐 = 𝒙,𝐛𝟐 = 𝐲, 𝐜𝟐 = 𝐳) 

𝐀𝐬𝐬𝐢𝐠𝐧𝐢𝐧𝐠 𝐲 + 𝐳 = 𝐗, 𝐳 + 𝒙 = 𝐘, 𝒙 + 𝐲 = 𝐙 ⇒ 𝐗 + 𝐘 − 𝐙 = 𝟐𝐳 > 0, 

𝐘 + 𝐙 − 𝐗 = 𝟐𝒙 > 0 𝒂𝐧𝐝 𝐙 + 𝐗 − 𝐘 = 𝟐𝐲 > 0 ⇒ 𝑋 + 𝐘 > 𝑍, 𝐘 + 𝐙 > 𝑋, 𝑍 + 𝑋 > 𝑌 

⇒ 𝐗,𝐘, 𝐙 𝐟𝐨𝐫𝐦 𝐬𝐢𝐝𝐞𝐬 𝐨𝐟 𝒂𝐭𝐫𝐢𝒂𝐧𝐠𝐥𝐞 𝐰𝐢𝐭𝐡 𝐬𝐞𝐦𝐢𝐩𝐞𝐫𝐢𝐦𝐞𝐭𝐞𝐫, 𝐜𝐢𝐫𝐜𝐮𝐦𝐫𝒂𝐝𝐢𝐮𝐬 𝒂𝐧𝐝 𝐢𝐧𝐫𝒂𝐝𝐢𝐮𝐬 

= 𝐬,𝐑, 𝐫 (𝐬𝒂𝐲) 𝐲𝐢𝐞𝐥𝐝𝐢𝐧𝐠 𝟐∑𝒙

𝐜𝐲𝐜

=∑𝐗

𝐜𝐲𝐜

= 𝟐𝐬 ⇒∑𝒙

𝐜𝐲𝐜

= 𝐬 ⇒ 𝒙 = 𝐬 − 𝐗, 𝐲 = 𝐬 − 𝐘, 

𝐳 = 𝐬 − 𝐙 ∴ 𝒙𝐲𝐳 = 𝐫𝟐𝐬,∑𝒙𝐲

𝐜𝐲𝐜

= 𝟒𝐑𝐫 + 𝐫𝟐,∑𝒙𝟑𝐲𝟑

𝐜𝐲𝐜

= (𝟒𝐑𝐫 + 𝐫𝟐)𝟑 − 𝟏𝟐𝐑𝐫𝟑𝐬𝟐, 

∑𝒙𝟑

𝐜𝐲𝐜

= 𝐬𝟑 − 𝟏𝟐𝐑𝐫𝐬 ⇒∑𝒙𝟔

𝐜𝐲𝐜

= (𝐬𝟑 − 𝟏𝟐𝐑𝐫𝐬)𝟐 − 𝟐((𝟒𝐑𝐫 + 𝐫𝟐)𝟑 − 𝟏𝟐𝐑𝐫𝟑𝐬𝟐) 

𝒂𝐧𝐝 𝐬𝐨, (∗) ⇔ 𝟐𝟒𝟑((𝐬𝟑 − 𝟏𝟐𝐑𝐫𝐬)𝟐 − 𝟐((𝟒𝐑𝐫 + 𝐫𝟐)𝟑 − 𝟏𝟐𝐑𝐫𝟑𝐬𝟐)) + 𝟕𝟐𝟗𝐫𝟒𝐬𝟐 − 𝟐𝐬𝟔 

≥
?
⏟
(∗∗)

𝟎 𝒂𝐧𝐝 ∵ 𝟐𝟒𝟏(𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐)𝟑 ≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

𝟎 ∴ 𝐢𝐧 𝐨𝐫𝐝𝐞𝐫 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 (∗∗), 𝐢𝐭 

𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 𝐋𝐇𝐒 𝐨𝐟 (∗∗) ≥
?
𝟐𝟒𝟏(𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐)𝟑 ⇔ (𝟓𝟕𝟑𝟔𝐑− 𝟑𝟔𝟏𝟓𝐫)𝐬𝟒 − 

𝐫(𝟏𝟔(𝟗𝟑𝟖𝟏𝐑𝟐 − 𝟕𝟓𝟗𝟓𝐑𝐫 + 𝟏𝟎𝟖𝟒𝐫𝟐) + 𝟖𝐑𝐫 + 𝟐𝐫𝟐)𝐬𝟐 + 

𝐫𝟐(𝟏𝟐𝟖(𝟕𝟒𝟔𝟗𝐑𝟑 − 𝟕𝟒𝟏𝟑𝐑𝟐𝐫 + 𝟐𝟐𝟏𝟒𝐑𝐫𝟐 − 𝟐𝟑𝟗𝐫𝟑) + 𝟗𝟔𝐑𝟐𝐫 − 𝟐𝟒𝐑𝐫𝟐 − 𝟏𝟗𝐫𝟑) ≥
?
⏟
(∗∗∗)

𝟎 

 𝒂𝐧𝐝 ∵ (𝟓𝟕𝟑𝟔𝐑− 𝟑𝟔𝟏𝟓𝐫)(𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐)𝟐 ≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

𝟎 ∴ 𝐢𝐧 𝐨𝐫𝐝𝐞𝐫 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 (∗∗∗), 

𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 𝐋𝐇𝐒 𝐨𝐟 (∗∗∗) ≥
?
(𝟓𝟕𝟑𝟔𝐑− 𝟑𝟔𝟏𝟓𝐫)(𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐)𝟐 

⇔ (𝟖𝟑𝟔𝟒𝐑𝟐 − 𝟏𝟐𝟖𝟖𝟐𝐑𝐫 + 𝟒𝟕𝟎𝟏𝐫𝟐)𝐬𝟐 ≥
?
⏟

(∗∗∗∗)

 

𝐫(𝟑𝟐(𝟒𝟎𝟎𝟑𝐑𝟑 − 𝟔𝟗𝟖𝟖𝐑𝟐𝐫 + 𝟑𝟒𝟐𝟓𝐑𝐫𝟐 − 𝟒𝟔𝟕𝐫𝟑) + 𝟖𝐑𝟐𝐫 + 𝟖𝐑𝐫𝟐 + 𝟑𝐫𝟑) 

𝒂𝐧𝐝 𝐢𝐧𝐝𝐞𝐞𝐝, (𝟖𝟑𝟔𝟒𝐑𝟐 − 𝟏𝟐𝟖𝟖𝟐𝐑𝐫 + 𝟒𝟕𝟎𝟏𝐫𝟐)𝐬𝟐 ≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

 

(𝟖𝟑𝟔𝟒𝐑𝟐 − 𝟏𝟐𝟖𝟖𝟐𝐑𝐫 + 𝟒𝟕𝟎𝟏𝐫𝟐)(𝟏𝟔𝐑𝐫 − 𝟓𝐫𝟐) ≥
?
𝐑𝐇𝐒 𝐨𝐟 (∗∗∗∗) 

⇔ 𝟐𝟖𝟔𝟒𝐭𝟑 − 𝟏𝟐𝟏𝟔𝟐𝐭𝟐 + 𝟏𝟓𝟎𝟎𝟗𝐭 − 𝟒𝟐𝟖𝟐 ≥
?
𝟎 (𝐭 =

𝐑

𝐫
) 
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⇔ (𝐭 − 𝟐)((𝐭 − 𝟐)(𝟐𝟖𝟔𝟒𝐭 − 𝟕𝟎𝟔) + 𝟕𝟐𝟗) ≥
?
𝟎 → 𝐭𝐫𝐮𝐞 ∵ 𝐭 ≥

𝐄𝐮𝐥𝐞𝐫
𝟐 ⇒ (∗∗∗∗) ⇒ (∗∗∗) 

⇒ (∗∗) ⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 ∴ 𝒂𝟏𝟐 + 𝐛𝟏𝟐 + 𝐜𝟏𝟐 + (𝒂𝐛𝐜)𝟐(𝒂𝟑𝐛𝟑 + 𝐛𝟑𝐜𝟑 + 𝐜𝟑𝒂𝟑) ≥ 𝟔 

∀ 𝒂, 𝐛, 𝐜 > 0│𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐 = 𝟑,′′ =′′  𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 = 𝟏 (𝐐𝐄𝐃) 

2065. 𝐈𝐟 𝒂, 𝐛 >
𝟏

𝟑
 𝒂𝐧𝐝 

𝟏

𝒂𝟐(𝟑𝐛−𝟏)
+

𝟏

𝐛𝟐(𝟑𝒂−𝟏)
≥ √𝒂𝐛

𝟑
 𝐭𝐡𝐞𝐧 𝐩𝐫𝐨𝐯𝐞 𝐭𝐡𝒂𝐭 ∶ 

𝟏 + 𝒂 + 𝐛 ≥ 𝟑𝒂𝐛 

  Proposed by Nguyen Hung Cuong-Vietnam 

Solution by Soumava Chakraborty-Kolkata-India 

𝐋𝐞𝐭 𝒙 = 𝒂 + 𝐛 𝒂𝐧𝐝 𝐲 = 𝒂𝐛 𝒂𝐧𝐝 𝐰𝐡𝐞𝐧 ∶ 𝐲 ≤ 𝟏, 𝒂 + 𝐛 ≥
𝐀𝐌−𝐆𝐌

𝟐√𝐲 = 𝟐𝐘 (𝐬𝒂𝐲) 

≥
?
𝟑𝒂𝐛 − 𝟏 = 𝟑𝐘𝟐 − 𝟏 ⇔ (𝟑𝐘+ 𝟏)(𝐘 − 𝟏) ≤

?
𝟎 → 𝐭𝐫𝐮𝐞 ∵ 𝐘 = √𝐲 ≤ 𝟏 𝒂𝐧𝐝 𝒂, 𝐛 >

𝟏

𝟑
  

⇒ 𝐘 >
𝟏

𝟑
> 0 ∴ 𝟏 + 𝒂 + 𝐛 ≥ 𝟑𝒂𝐛 ∀ 𝐲 ∈ (

𝟏

𝟗
, 𝟏] & 𝐰𝐞 𝐧𝐨𝐰 𝐟𝐨𝐜𝐮𝐬 𝐨𝐧 𝐭𝐡𝐞 𝐜𝒂𝐬𝐞 𝐰𝐡𝐞𝐧 ∶ 

𝐲 > 1;  𝒂𝐧𝐝 𝐧𝐨𝐰,
𝟏

𝒂𝟐(𝟑𝐛 − 𝟏)
+

𝟏

𝐛𝟐(𝟑𝒂 − 𝟏)
≥ √𝒂𝐛

𝟑
⇒

𝟑𝒙𝐲 − 𝒙𝟐 + 𝟐𝐲

𝐲𝟐(𝟗𝐲 − 𝟑𝒙 + 𝟏)
≥ √𝐲

𝟑   

⇒
𝟑𝒙𝐳𝟑 − 𝒙𝟐 + 𝟐𝐳𝟑

𝟗𝐳𝟗 − 𝟑𝒙𝐳𝟔 + 𝐳𝟔
≥ 𝐳 (𝐳 = √𝐲

𝟑 ) ⇒ 𝒙𝟐 − 𝒙(𝟑𝐳𝟕 + 𝟑𝐳𝟑) + 𝟗𝐳𝟏𝟎 + 𝐳𝟕 − 𝟐𝐳𝟑 ≤
①

𝟎 

𝒂𝐧𝐝 𝐝𝐢𝐬𝐜𝐫𝐢𝐦𝐢𝐧𝒂𝐧𝐭 𝐨𝐟 𝐋𝐇𝐒 𝐨𝐟 ① = 𝛅 = (𝟑𝐳𝟕 + 𝟑𝐳𝟑)𝟐 − 𝟒(𝟗𝐳𝟏𝟎 + 𝐳𝟕 − 𝟐𝐳𝟑) 

= 𝐳𝟑(𝟗𝐳𝟏𝟏 − 𝟏𝟖𝐳𝟕 − 𝟒𝐳𝟒 + 𝟗𝐳𝟑 + 𝟖) = 𝐳𝟑 (𝟗𝐳𝟑(𝐳𝟒 − 𝟏)𝟐 + 𝟒(𝟐 − 𝐳𝟒)) > 𝟎  

𝐰𝐡𝐞𝐧𝐞𝐯𝐞𝐫 ∶ 𝐳𝟒 ≤ 𝟐 (∵ 𝐳 > 0) 𝒂𝐧𝐝 𝐰𝐡𝐞𝐧 ∶ 𝐳𝟒 > 2, 

𝛅 = 𝐳𝟑 ((𝐳𝟒 − 𝟐)(𝟗(𝐳𝟕 − 𝟏) + 𝟓) + 𝟗𝐳𝟑) > 𝟎 (𝐬𝐢𝐧𝐜𝐞 𝐳𝟒 > 2 > 1 ⇒ 𝐳 > 1) 

∴ 𝛅 > 0 ∀ 𝐳 > 0 (𝐢𝐦𝐩𝒍𝐢𝐧𝐠 ∀ 𝐳 > 1) ∴ ① ⇒ 𝒙 ≥
𝟑𝐳𝟕 + 𝟑𝐳𝟑 − √𝛅

𝟐
>
?
𝟑𝒂𝐛 − 𝟏 

= 𝟑𝐲 − 𝟏 = 𝟑𝐳𝟑 − 𝟏 ⇔ 𝟑𝐳𝟕 − 𝟑𝐳𝟑 + 𝟐 >
?
√𝛅 ⇔ (𝟑𝐳𝟕 − 𝟑𝐳𝟑 + 𝟐)𝟐 >

?
𝛅 

 

= 𝐳𝟑(𝟗𝐳𝟏𝟏 − 𝟏𝟖𝐳𝟕 − 𝟒𝐳𝟒 + 𝟗𝐳𝟑 + 𝟖) ⇔ 𝟒𝐳𝟕 − 𝟓𝐳𝟑 + 𝟏 >
?
𝟎 

 

⇔ (𝐳 − 𝟏)(𝟒𝐳𝟔 + 𝟒𝐳𝟓 + 𝟒𝐳𝟒 + 𝟒𝐳𝟑 − 𝐳𝟐 − 𝐳 − 𝟏) >
?
𝟎 → 𝐭𝐫𝐮𝐞 ∵ 𝐳 = √𝐲

𝟑 > 1 

 
∴ 𝒂 + 𝐛 > 3𝒂𝐛 − 𝟏 ∀ 𝐲 > 1 𝒂𝐧𝐝 𝐬𝐨, 𝐜𝐨𝐦𝐛𝐢𝐧𝐢𝐧𝐠 𝐛𝐨𝐭𝐡 𝐜𝒂𝐬𝐞𝐬, 𝟏 + 𝒂 + 𝐛 ≥ 𝟑𝒂𝐛  

 

∀ 𝒂, 𝐛 >
𝟏

𝟑
 𝒂𝐧𝐝 

𝟏

𝒂𝟐(𝟑𝐛 − 𝟏)
+

𝟏

𝐛𝟐(𝟑𝒂 − 𝟏)
≥ √𝒂𝐛

𝟑
,′′=′′  𝐢𝐟𝐟 𝒂 = 𝐛 = 𝟏 (𝐐𝐄𝐃) 
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2066. 𝐈𝐟 𝒂, 𝐛, 𝐜 > 0 𝒂𝐧𝐝 𝒂𝐛𝐜 = 𝟏 𝐭𝐡𝐞𝐧 ∶ 

∑
𝐛(𝒂𝐛)𝟐𝟎𝟐𝟔 + 𝐜. 𝐜𝟐.𝟐𝟎𝟐𝟔

(𝒂𝐛)𝟐𝟎𝟐𝟔 + (𝐛𝐜)𝟐𝟎𝟐𝟔
𝐜𝐲𝐜

≥ 𝟑 

  Proposed by Zaza Mzhavanadze-Georgia 

Solution by Soumava Chakraborty-Kolkata-India 

∀ 𝐀’, 𝐁’, 𝐂’, 𝒙′, 𝐲′, 𝐳′ > 0, 

𝒙′

𝐲′ + 𝐳′
(𝐁′ + 𝐂′) +

𝐲′

𝐳′ + 𝒙′
(𝐂′ +𝐀′) +

𝐳′

𝒙′ + 𝐲′
(𝐀′ + 𝐁′) ≥

𝐖𝒂𝒍𝐭𝐞𝐫 𝐉𝒂𝐧𝐨𝐮𝐬

⏟      
①

√𝟑∑𝐀′𝐁′

𝐜𝐲𝐜

 

𝐍𝐨𝐰,∑
𝐛(𝒂𝐛)𝟐𝟎𝟐𝟔 + 𝐜. 𝐜𝟐.𝟐𝟎𝟐𝟔

(𝒂𝐛)𝟐𝟎𝟐𝟔 + (𝐛𝐜)𝟐𝟎𝟐𝟔
𝐜𝐲𝐜

=∑

𝐛𝐧+𝟏

𝐛𝐧𝐜𝐧 + 𝐜
𝟐𝐧+𝟏

𝐛𝐧

𝐛𝐧𝐜𝐧 +
(𝐛𝐜)𝐧𝐜𝐲𝐜

  

(𝐧 = 𝟐𝟎𝟐𝟔 𝒂𝐧𝐝 ∵ 𝒂𝐧 =
𝟏

𝐛𝐧𝐜𝐧
 𝒂𝐧𝐝 𝒂𝐧𝒂𝒍𝐨𝐠𝐬) = ∑

𝐛
𝐜𝐧 + 𝐜

𝟐𝐧+𝟏

𝟏
𝐜𝐧 +

𝟏
𝒂𝐧𝐜𝐲𝐜

 

(∵ (𝐛𝐜)𝐧 =
𝟏

𝒂𝐧
 𝒂𝐧𝐝 𝒂𝐧𝒂𝒍𝐨𝐠𝐬) = ∑

𝟏
𝐛𝐧 (

𝐛𝐧+𝟏

𝐜𝐧 + 𝐛𝐧 . 𝐜𝟐𝐧+𝟏)

𝟏
𝐜𝐧 +

𝟏
𝒂𝐧𝐜𝐲𝐜

=∑

𝟏
𝐛𝐧 (

𝐛𝐧+𝟏

𝐜𝐧 +
𝐜𝐧+𝟏

𝒂𝐧 )

𝟏
𝐜𝐧 +

𝟏
𝒂𝐧𝐜𝐲𝐜

  

((𝐛𝐜)𝐧 =
𝟏

𝒂𝐧
 & 𝒂𝐧𝒂𝒍𝐨𝐠𝐬) =

𝒙′

𝐲′ + 𝐳′
(𝐁′ + 𝐂′) +

𝐲′

𝐳′ + 𝒙′
(𝐂′ +𝐀′) +

𝐳′

𝒙′ + 𝐲′
(𝐀′ + 𝐁′)  

(𝒙′ =
𝟏

𝐛𝐧
, 𝐲′ =

𝟏

𝐜𝐧
, 𝐳′ =

𝟏

𝒂𝐧
, 𝐀′ =

𝒂𝐧+𝟏

𝐛𝐧
, 𝐁′ =

𝐛𝐧+𝟏

𝐜𝐧
, 𝐂′ =

𝐜𝐧+𝟏

𝒂𝐧
) 

≥
𝐯𝐢𝒂 ①

√𝟑∑(
𝒂𝐧+𝟏

𝐛𝐧
.
𝐛𝐧+𝟏

𝐜𝐧
)

𝐜𝐲𝐜

≥
𝐀𝐌−𝐆𝐌

𝟑.√√(
𝒂𝐧+𝟏. 𝐛𝐧+𝟏. 𝐜𝐧+𝟏

𝒂𝐧𝐛𝐧𝐜𝐧
)

𝟐
𝟑

= 𝟑. √𝒂𝐛𝐜
𝟑

= 𝟑 

∴∑
𝐛(𝒂𝐛)𝟐𝟎𝟐𝟔 + 𝐜. 𝐜𝟐.𝟐𝟎𝟐𝟔

(𝒂𝐛)𝟐𝟎𝟐𝟔 + (𝐛𝐜)𝟐𝟎𝟐𝟔
𝐜𝐲𝐜

≥ 𝟑 ∀ 𝒂, 𝐛, 𝐜 > 0 │𝒂𝐛𝐜 = 𝟏, 

′′ =′′  𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 = 𝟏 (𝐐𝐄𝐃) 
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2067. 𝐈𝐟 𝒂, 𝐛, 𝐜 > 0, 𝑛 ∈ ℕ 𝒂𝐧𝐝 𝒂𝐛𝐜 = 𝟏 𝐭𝐡𝐞𝐧 ∶ 

∑
√𝒂(𝐛𝟒 + 𝐜𝟒) + √𝐜(𝐜𝟒 + 𝒂𝟒)

(
𝐛
𝒂
)
𝐧

. √𝒂𝐛 + (
𝐜
𝒂
)
𝐧
. √𝐛𝐜𝐜𝐲𝐜

≥ 𝟑√𝟐 

  Proposed by Zaza Mzhavanadze-Georgia 

Solution by Soumava Chakraborty-Kolkata-India 

𝐕𝐢𝒂 𝐖𝒂𝒍𝐭𝐞𝐫 𝐉𝒂𝐧𝐨𝐮𝐬, ∀ 𝐀’, 𝐁’, 𝐂’, 𝒙′, 𝐲′, 𝐳′ > 0, 

𝒙′

𝐲′ + 𝐳′
(𝐁′ + 𝐂′) +

𝐲′

𝐳′ + 𝒙′
(𝐂′ +𝐀′) +

𝐳′

𝒙′ + 𝐲′
(𝐀′ + 𝐁′) ≥ √𝟑∑𝐀′𝐁′

𝐜𝐲𝐜

 (𝐯𝐢𝒂 ) →① 

∑
√𝒂(𝐛𝟒 + 𝐜𝟒) + √𝐜(𝐜𝟒 + 𝒂𝟒)

(
𝐛
𝒂)

𝐧

. √𝒂𝐛 + (
𝐜
𝒂)

𝐧

. √𝐛𝐜𝐜𝐲𝐜

=∑
√𝐛

𝟒 + 𝐜𝟒

𝐜 + √
𝐜𝟒 + 𝒂𝟒

𝒂

(
𝐛
𝒂)

𝐧

. √
𝐛
𝐜 + (

𝐜
𝒂)

𝐧

. √
𝐛
𝒂

𝐜𝐲𝐜

= 

=∑

𝒂𝐧

√𝐛
. (√

𝐛𝟒 + 𝐜𝟒

𝐜 + √
𝐜𝟒 + 𝒂𝟒

𝒂 )

𝐛𝐧

√𝐜
+
𝐜𝐧

√𝒂
𝐜𝐲𝐜

= 

=
𝒙′

𝐲′ + 𝐳′
(𝐁′ + 𝐂′) +

𝐲′

𝐳′ + 𝒙′
(𝐂′ + 𝐀′) +

𝐳′

𝒙′ + 𝐲′
(𝐀′ + 𝐁′) 

(𝒙′ =
𝒂𝐧

√𝐛
, 𝐲′ =

𝐛𝐧

√𝐜
, 𝐳′ =

𝐜𝐧

√𝒂
, 𝐀′ = √

𝒂𝟒 + 𝐛𝟒

𝐛
,𝐁′ = √

𝐛𝟒 + 𝐜𝟒

𝐜
, 𝐂′ = √

𝐜𝟒 + 𝒂𝟒

𝒂
) ≥
𝐯𝐢𝒂 ①

 

√𝟑∑(√
𝒂𝟒 + 𝐛𝟒

𝐛
.√
𝐛𝟒 + 𝐜𝟒

𝐜
)

𝐜𝐲𝐜

≥
𝐀𝐌−𝐆𝐌

𝟑.√√
(𝒂𝟒 + 𝐛𝟒)(𝐛𝟒 + 𝐜𝟒)(𝐜𝟒 + 𝒂𝟒)

𝒂𝐛𝐜

𝟑

≥
𝐂𝐞𝐬𝒂𝐫𝐨

𝟑. √
𝟖𝒂𝟒𝐛𝟒𝐜𝟒

𝒂𝐛𝐜

𝟔

 

=
𝒂𝐛𝐜 = 𝟏

𝟑. √𝟖
𝟔

= 𝟑√𝟐 𝒂𝐧𝐝 𝐬𝐨,∑
√𝒂(𝐛𝟒 + 𝐜𝟒) + √𝐜(𝐜𝟒 + 𝒂𝟒)

(
𝐛
𝒂)

𝐧

. √𝒂𝐛 + (
𝐜
𝒂)

𝐧

. √𝐛𝐜𝐜𝐲𝐜

≥ 𝟑√𝟐 

∀ 𝒂, 𝐛, 𝐜 > 0 │𝒂𝐛𝐜 = 𝟏 ∧ 𝐧 ∈ ℕ, ′′ =′′  𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 = 𝟏 (𝐐𝐄𝐃) 

2068.  𝐈𝐟 𝒙, 𝐲, 𝐳 > 0, 𝑥 + 𝐲 + 𝐳 = 𝟑 𝒂𝐧𝐝 𝛌 <
𝟗

𝟐
 𝐭𝐡𝐞𝐧 ∶ 

∑ 𝒙𝐲𝐜𝐲𝐜

∑ 𝒙𝟑𝐜𝐲𝐜
+
𝛌

𝟑
− 𝟏 ≤

𝛌

∑ 𝒙𝟐𝐜𝐲𝐜
 

  Proposed by Marin Chirciu-Romania 
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Solution by Soumava Chakraborty-Kolkata-India 

∑ 𝒙𝐲𝐜𝐲𝐜

∑ 𝒙𝟑𝐜𝐲𝐜
+
𝛌

𝟑
− 𝟏 ≤

? 𝛌

∑ 𝒙𝟐𝐜𝐲𝐜
⇔ 𝛌(

𝟏

𝟑
−

𝟏

∑ 𝒙𝟐𝐜𝐲𝐜
) ≤

?
𝟏 −

∑ 𝒙𝐲𝐜𝐲𝐜

∑ 𝒙𝟑𝐜𝐲𝐜
 

⇔ 𝛌(
𝟏

𝟑
−
(∑ 𝒙𝐜𝐲𝐜 )

𝟐

𝟗∑ 𝒙𝟐𝐜𝐲𝐜

) ≤
?
𝟏 −

(∑ 𝒙𝐲𝐜𝐲𝐜 )(∑ 𝒙𝐜𝐲𝐜 )

𝟑∑ 𝒙𝟑𝐜𝐲𝐜
 (∵ 𝒙 + 𝐲 + 𝐳 = 𝟑) 

⇔ 𝛌.
𝟑∑ 𝒙𝟐𝐜𝐲𝐜 − (∑ 𝒙𝐜𝐲𝐜 )

𝟐

𝟗∑ 𝒙𝟐𝐜𝐲𝐜
≤
? 𝟑∑ 𝒙𝟑𝐜𝐲𝐜 − (∑ 𝒙𝐲𝐜𝐲𝐜 )(∑ 𝒙𝐜𝐲𝐜 )

𝟑∑ 𝒙𝟑𝐜𝐲𝐜
 𝒂𝐧𝐝 

∵ 𝛌 <
𝟗

𝟐
 ∧  𝟑∑𝒙𝟐

𝐜𝐲𝐜

− (∑𝒙

𝐜𝐲𝐜

)

𝟐

≥ 𝟎 ∴ 𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 

𝟗

𝟐
.
𝟑∑ 𝒙𝟐𝐜𝐲𝐜 − (∑ 𝒙𝐜𝐲𝐜 )

𝟐

𝟗∑ 𝒙𝟐𝐜𝐲𝐜
≤
? 𝟑∑ 𝒙𝟑𝐜𝐲𝐜 − (∑ 𝒙𝐲𝐜𝐲𝐜 )(∑ 𝒙𝐜𝐲𝐜 )

𝟑∑ 𝒙𝟑𝐜𝐲𝐜
 

⇔ 𝟐∑𝒙𝟒𝐲

𝐜𝐲𝐜

+ 𝟐∑𝒙𝐲𝟒

𝐜𝐲𝐜

≥
?
⏟
(∗)

∑𝒙𝟑𝐲𝟐

𝐜𝐲𝐜

+∑𝒙𝟐𝐲𝟑

𝐜𝐲𝐜

+ 𝟐𝒙𝐲𝐳∑𝒙𝐲

𝐜𝐲𝐜

 

𝐍𝐨𝐰, 𝟐∑𝒙𝟒𝐲

𝐜𝐲𝐜

+ 𝟐∑𝒙𝐲𝟒

𝐜𝐲𝐜

=∑𝒙𝐲(𝒙𝟑 + 𝐲𝟑)

𝐜𝐲𝐜

+∑𝐳(𝒙𝟒 + 𝐲𝟒)

𝐜𝐲𝐜

 

≥
𝐀𝐌−𝐆𝐌

∑𝒙𝟐𝐲𝟐(𝒙 + 𝐲)

𝐜𝐲𝐜

+∑𝟐𝐳(𝒙𝟐𝐲𝟐)

𝐜𝐲𝐜

=∑𝒙𝟑𝐲𝟐

𝐜𝐲𝐜

+∑𝒙𝟐𝐲𝟑

𝐜𝐲𝐜

+ 𝟐𝒙𝐲𝐳∑𝒙𝐲

𝐜𝐲𝐜

 

⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 ∴
∑ 𝒙𝐲𝐜𝐲𝐜

∑ 𝒙𝟑𝐜𝐲𝐜
+
𝛌

𝟑
− 𝟏 ≤

𝛌

∑ 𝒙𝟐𝐜𝐲𝐜
∀ 𝒙, 𝐲, 𝐳 > 0│𝑥 + 𝐲 + 𝐳 = 𝟑 𝒂𝐧𝐝 𝛌 <

𝟗

𝟐
, 

 
′′ =′′  𝐢𝐟𝐟 𝒙 = 𝐲 = 𝐳 = 𝟏 (𝐐𝐄𝐃) 

 

2069. 

𝐅𝐨𝐫 𝒂, 𝐛, 𝐜 ≥ 𝟎, 𝒂𝐛 + 𝐛𝐜 + 𝐜𝒂 = 𝟑 𝐩𝐫𝐨𝐯𝐞 𝐭𝐡𝒂𝐭 ∶ 

𝟏

𝒂 + 𝟑𝐛
+

𝟏

𝐛 + 𝟑𝐜
+

𝟏

𝐜 + 𝟑𝒂
≥
𝟑

𝟒
 

  Proposed by Dang Ngoc Minh-Vietnam 

Solution by Soumava Chakraborty-Kolkata-India 

𝟏

𝒂 + 𝟑𝐛
+

𝟏

𝐛 + 𝟑𝐜
+

𝟏

𝐜 + 𝟑𝒂
≥
? 𝟑

𝟒
 

⇔ 𝟏𝟐∑𝒂𝟐

𝐜𝐲𝐜

+ 𝟓𝟐∑𝒂𝐛

𝐜𝐲𝐜

≥
?
𝟗∑𝒂𝟐𝐛

𝐜𝐲𝐜

+ 𝟐𝟕∑𝒂𝐛𝟐

𝐜𝐲𝐜

+ 𝟖𝟒𝒂𝐛𝐜 
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⇔ 𝟏𝟐∑𝒂𝟐

𝐜𝐲𝐜

+ 𝟑∑𝒂𝐛

𝐜𝐲𝐜

+ 𝟒𝟗∑𝒂𝐛

𝐜𝐲𝐜

≥
?

 

𝟐𝟕((∑𝒂

𝐜𝐲𝐜

)(∑𝒂𝐛

𝐜𝐲𝐜

) − 𝟑𝒂𝐛𝐜) + 𝟖𝟒𝒂𝐛𝐜 − 𝟏𝟖∑𝒂𝟐𝐛

𝐜𝐲𝐜

 

⇔
𝒂𝐛+𝐛𝐜+𝐜𝒂 = 𝟑

𝟏𝟐∑𝒂𝟐

𝐜𝐲𝐜

+ 𝟑∑𝒂𝐛

𝐜𝐲𝐜

+ 𝟏𝟒𝟕 + 𝟏𝟖∑𝒂𝟐𝐛

𝐜𝐲𝐜

≥
?
⏟
(∗)

𝟑𝒂𝐛𝐜 + 𝟖𝟏∑𝒂

𝐜𝐲𝐜

 

𝐋𝐞𝐭 𝐅(𝒂, 𝐛, 𝐜) = 𝟏𝟐∑𝒂𝟐

𝐜𝐲𝐜

+ 𝟑∑𝒂𝐛

𝐜𝐲𝐜

+ 𝟏𝟖∑𝒂𝟐𝐛

𝐜𝐲𝐜

+ 𝟏𝟒𝟕− 𝟑𝒂𝐛𝐜 − 𝟖𝟏∑𝒂

𝐜𝐲𝐜

 

𝒂𝐧𝐝 𝐭𝐡𝐞𝐧 ∶ 𝐅(𝒂, 𝒂, 𝒂) = 𝟑𝟔𝒂𝟐 + 𝟗𝒂𝟐 + 𝟓𝟒𝒂𝟑 + 𝟏𝟒𝟕 − 𝟑𝒂𝟑 − 𝟐𝟒𝟑𝒂 

= 𝟑(𝒂 − 𝟏)𝟐(𝟏𝟕𝒂 + 𝟒𝟗) ≥ 𝟎 (∵ 𝒂 ≥ 𝟎) ∴ 𝐅(𝒂, 𝒂, 𝒂) ≥
①

𝟎 ∀ 𝒂 ≥ 𝟎 
𝐀𝒍𝐬𝐨, 𝐅(𝒂, 𝐛, 𝟎) = 𝟏𝟐(𝒂𝟐 + 𝐛𝟐) + 𝟑𝒂𝐛 + 𝟏𝟖𝒂𝟐𝐛 + 𝟏𝟒𝟕 − 𝟖𝟏(𝒂 + 𝐛) 𝒂𝐧𝐝 𝐰𝐡𝐞𝐧 ∶ 
𝒂 = 𝟎, 𝐅(𝒂, 𝐛, 𝟎) = 𝟏𝟐𝐛𝟐 − 𝟖𝟏𝐛 + 𝟏𝟒𝟕 > 𝟎 ∵ 𝐝𝐢𝐬𝐜𝐫𝐢𝐦𝐢𝐧𝒂𝐧𝐭 = 𝟖𝟏𝟐 − 𝟒𝟖. 𝟏𝟒𝟕 

= −𝟒𝟗𝟓 < 0 𝑎𝐧𝐝 𝐰𝐡𝐞𝐧 ∶ 𝒂 > 0, 𝐅(𝒂, 𝐛, 𝟎) = 

𝟏𝟐 (𝒂𝟐 +
𝟗

𝒂𝟐
) + 𝟗 + 𝟏𝟖𝒂𝟐.

𝟑

𝒂
+ 𝟏𝟒𝟕 − 𝟖𝟏(𝒂 +

𝟑

𝒂
)  

(∵ 𝐜 = 𝟎 ∧  𝒂𝐛 + 𝐛𝐜 + 𝐜𝒂 = 𝟑 ⇒ 𝒂𝐛 = 𝟑) =
𝟑

𝒂𝟐
(𝟒𝒂𝟒 − 𝟗𝒂𝟑 + 𝟓𝟐𝒂𝟐 − 𝟖𝟏𝒂 + 𝟑𝟔) 

=
𝟏

𝟕𝟐𝟗𝒂𝟐
((𝟗𝒂 − 𝟖)𝟐((𝒂 − 𝟐𝟔)𝟐 + 𝟏𝟎𝟕𝒂𝟐 + 𝒂 + 𝟓𝟓𝟐) + 𝟐𝟗𝟒𝟗𝒂 + 𝟏𝟒𝟎) > 0 

(∵ 𝒂 > 𝟎) ∴ 𝐅(𝒂, 𝐛, 𝟎) ≥
②

𝟎 ∀ 𝒂, 𝐛 ≥ 𝟎│𝒂𝐛 = 𝟑 𝒂𝐧𝐝 𝐬𝐨,① 𝒂𝐧𝐝 ② ⇒ 𝐅(𝒂, 𝐛, 𝐜) ≥ 𝟎 

∀ 𝒂, 𝐛, 𝐜 ≥ 𝟎│𝒂𝐛 + 𝐛𝐜 + 𝐜𝒂 = 𝟑 ⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 ∴
𝟏

𝒂 + 𝟑𝐛
+

𝟏

𝐛 + 𝟑𝐜
+

𝟏

𝐜 + 𝟑𝒂
≥
𝟑

𝟒
 

∀ 𝒂, 𝐛, 𝐜 ≥ 𝟎│𝒂𝐛 + 𝐛𝐜 + 𝐜𝒂 = 𝟑, ′′ = ′′ 𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 = 𝟏 (𝐐𝐄𝐃) 
 

2070. 

𝐈𝐟 𝒂, 𝐛, 𝐜, 𝐝, 𝐞 > 0 𝑎𝐧𝐝 𝒂𝐛𝐜𝐝𝐞 = 𝟏 𝐭𝐡𝐞𝐧 ∶ 

∑𝒂𝟓𝐛

𝐜𝐲𝐜

≥∑𝒂

𝐜𝐲𝐜

 

  Proposed by Marin Chirciu-Romania 

Solution by Soumava Chakraborty-Kolkata-India 

𝒂𝟑 + 𝐛𝟑 + 𝐜𝟑 ≥
𝐀𝐌−𝐆𝐌

𝟑𝒂𝐛𝐜, 𝐛𝟑 + 𝐜𝟑 + 𝐝𝟑 ≥
𝐀𝐌−𝐆𝐌

𝟑𝐛𝐜𝐝, 

𝐜𝟑 + 𝐝𝟑 + 𝐞𝟑 ≥
𝐀𝐌−𝐆𝐌

𝟑𝐜𝐝𝐞, 𝐝𝟑 + 𝐞𝟑 + 𝒂𝟑 ≥
𝐀𝐌−𝐆𝐌

𝟑𝐝𝐞𝒂 𝒂𝐧𝐝 𝐞𝟑 + 𝒂𝟑 + 𝐛𝟑 ≥
𝐀𝐌−𝐆𝐌

𝟑𝐞𝒂𝐛 
𝒂𝐧𝐝 𝐯𝐢𝒂 𝐬𝐮𝐦𝐦𝒂𝐭𝐢𝐨𝐧,𝐰𝐞 𝐠𝐞𝐭 ∶ 
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𝟑(𝒂𝟑 + 𝐛𝟑 + 𝐜𝟑 + 𝐝𝟑 + 𝐞𝟑) ≥ 𝟑(𝒂𝐛𝐜 + 𝐛𝐜𝐝 + 𝐜𝐝𝐞 + 𝐝𝐞𝒂 + 𝐞𝒂𝐛) 

⇒∑𝒂𝟑

𝐜𝐲𝐜

≥
①

∑𝒂𝐛𝐜

𝐜𝐲𝐜

 & 𝑛𝐨𝐰, (𝒂 + 𝐛 + 𝐜 + 𝐝 + 𝐞)(𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐 + 𝐝𝟐 + 𝐞𝟐) 

=∑𝒂𝟑

𝐜𝐲𝐜

+ 𝒂((𝐛𝟐 + 𝐜𝟐) + (𝐝𝟐 + 𝐞𝟐)) + 𝐛((𝐜𝟐 + 𝐝𝟐) + (𝐞𝟐 + 𝒂𝟐)) + 

𝐜 ((𝐝𝟐 + 𝐞𝟐) + (𝒂𝟐 + 𝐛𝟐)) + 𝐝 ((𝐞𝟐 + 𝒂𝟐) + (𝐛𝟐 + 𝐜𝟐)) + 𝐞((𝒂𝟐 + 𝐛𝟐) + (𝐜𝟐 + 𝐝𝟐)) 

≥
𝐀𝐌−𝐆𝐌

∑𝒂𝟑

𝐜𝐲𝐜

+ 𝒂(𝟐𝐛𝐜 + 𝟐𝐝𝐞) + 𝐛(𝟐𝐜𝐝 + 𝟐𝐞𝒂) + 𝐜(𝟐𝐝𝐞+ 𝟐𝒂𝐛) + 𝐝(𝟐𝐞𝒂 + 𝟐𝐛𝐜) 

≥
𝐯𝐢𝒂 ①

∑𝒂𝐛𝐜

𝐜𝐲𝐜

+ 𝟒∑𝒂𝐛𝐜

𝐜𝐲𝐜

⇒∑𝒂𝐛𝐜

𝐜𝐲𝐜

≤
② 𝟏

𝟓
(∑𝒂

𝐜𝐲𝐜

)(∑𝒂𝟐

𝐜𝐲𝐜

)  𝒂𝐧𝐝 𝐬𝐢𝐧𝐜𝐞 𝒂𝐛𝐜𝐝𝐞 = 𝟏, 

𝐰𝐞 𝐡𝒂𝐯𝐞 ∶ 𝐰𝐞 𝐡𝒂𝐯𝐞 ∶ ∑𝒂𝟓𝐛

𝐜𝐲𝐜

=∑
𝒂𝟒

𝐜𝐝𝐞
𝐜𝐲𝐜

≥
𝐁𝐞𝐫𝐠𝐬𝐭𝐫𝐨𝐦 (∑ 𝒂𝟐𝐜𝐲𝐜 )

𝟐

∑ 𝒂𝐛𝐜𝐜𝐲𝐜
≥

𝐯𝐢𝒂 ② 𝟓(∑ 𝒂𝟐𝐜𝐲𝐜 )
𝟐

(∑ 𝒂𝐜𝐲𝐜 )(∑ 𝒂𝟐𝐜𝐲𝐜 )
 

=
𝟓(∑ 𝒂𝟐𝐜𝐲𝐜 )

∑ 𝒂𝐜𝐲𝐜
≥

𝐂𝐡𝐞𝐛𝐲𝐬𝐡𝐞𝐯 𝟓.
𝟏
𝟓
(∑ 𝒂𝐜𝐲𝐜 )

𝟐

∑ 𝒂𝐜𝐲𝐜
=∑𝒂

𝐜𝐲𝐜

𝒂𝐧𝐝 𝐬𝐨,∑𝒂𝟓𝐛

𝐜𝐲𝐜

≥∑𝒂

𝐜𝐲𝐜

 

∀ 𝒂, 𝐛, 𝐜, 𝐝, 𝐞 > 0│𝑎𝐛𝐜𝐝𝐞 = 𝟏, ′′ =′′  𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 = 𝐝 = 𝐞 = 𝟏 (𝐐𝐄𝐃) 
 

2071. 𝐈𝐟 𝒂, 𝐛, 𝐜 > 0 𝑎𝐧𝐝 𝐧 ∈ ℕ∗ 𝐭𝐡𝐞𝐧 ∶ 

∑
𝐜𝟐𝐧−𝟐

𝒂𝟐𝐧+𝟏 + 𝐛𝟐𝐧+𝟏 + 𝒂𝐛𝐜𝟐𝐧−𝟏
𝐜𝐲𝐜

≤
𝟏

𝒂𝐛𝐜
 

  Proposed by Marin Chirciu-Romania 

Solution by Soumava Chakraborty-Kolkata-India 

∑
𝐜𝟐𝐧−𝟐

𝒂𝟐𝐧+𝟏 + 𝐛𝟐𝐧+𝟏 + 𝒂𝐛𝐜𝟐𝐧−𝟏
𝐜𝐲𝐜

≤
𝐂𝐡𝐞𝐛𝐲𝐬𝐡𝐞𝐯

 

≤∑
𝐜𝟐𝐧−𝟐

𝟏
𝟐
(𝒂𝟐 + 𝐛𝟐)(𝒂𝟐𝐧−𝟏 + 𝐛𝟐𝐧−𝟏) + 𝒂𝐛𝐜𝟐𝐧−𝟏𝐜𝐲𝐜

 (∵ 𝟐𝐧 − 𝟏 ≥ 𝟏 𝒂𝐬 𝐧 ∈ ℕ∗) ≤
𝐀𝐌−𝐆𝐌

 

≤∑
𝐜𝟐𝐧−𝟐

𝟏
𝟐
(𝟐𝒂𝐛)(𝒂𝟐𝐧−𝟏 + 𝐛𝟐𝐧−𝟏) + 𝒂𝐛𝐜𝟐𝐧−𝟏𝐜𝐲𝐜

=∑
𝐜𝟐𝐧−𝟐

𝒂𝐛(𝒂𝟐𝐧−𝟏 + 𝐛𝟐𝐧−𝟏 + 𝐜𝟐𝐧−𝟏)
𝐜𝐲𝐜

= 

=∑
𝐜𝟐𝐧−𝟏

𝒂𝐛𝐜(𝒂𝟐𝐧−𝟏 + 𝐛𝟐𝐧−𝟏 + 𝐜𝟐𝐧−𝟏)
𝐜𝐲𝐜

=
𝟏

𝒂𝐛𝐜
.
𝐜𝟐𝐧−𝟏 + 𝒂𝟐𝐧−𝟏 + 𝐛𝟐𝐧−𝟏

𝒂𝟐𝐧−𝟏 + 𝐛𝟐𝐧−𝟏 + 𝐜𝟐𝐧−𝟏
=

𝟏

𝒂𝐛𝐜
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𝒂𝐧𝐝 𝐬𝐨,∑
𝐜𝟐𝐧−𝟐

𝒂𝟐𝐧+𝟏 + 𝐛𝟐𝐧+𝟏 + 𝒂𝐛𝐜𝟐𝐧−𝟏
𝐜𝐲𝐜

≤
𝟏

𝒂𝐛𝐜
 ∀ 𝒂, 𝐛, 𝐜 > 0 𝑎𝐧𝐝 𝐧 ∈ ℕ∗, 

′′ =′′  𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 (𝐐𝐄𝐃) 

2072. 𝑳𝒆𝒕 𝒙, 𝒚, 𝒛 𝒃𝒆 𝒕𝒉𝒆 𝒂𝒏𝒈𝒍𝒆𝒔 𝒐𝒇 𝒂𝒄𝒖𝒕𝒆 𝒕𝒓𝒊𝒂𝒏𝒈𝒍𝒆.𝑷𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕: 
 

𝒙 𝒕𝒂𝒏𝟐𝒙

𝐥𝐧 (
𝟏

𝐜𝐨𝐬 𝒙
)
+
𝒙 𝒕𝒂𝒏𝟐𝒙

𝐥𝐧 (
𝟏

𝐜𝐨𝐬 𝒙
)
+
𝒙 𝒕𝒂𝒏𝟐𝒙

𝐥𝐧 (
𝟏

𝐜𝐨𝐬 𝒙
)
> 2𝒕𝒂𝒏𝒙 ∙ 𝒕𝒂𝒏𝒚 ∙ 𝒕𝒂𝒏𝒛 

 
Proposed by Gheorghe Crăciun-Romania 

Solution by Tapas Das-India 
 

𝑳𝒆𝒕 𝒇(𝒙) =  𝒙𝒕𝒂𝒏𝒙 − 𝟐 𝐥𝐧 (
𝟏

𝒄𝒐𝒔𝒙
) = 𝒙𝒕𝒂𝒏𝒙 − 𝟐 𝐥𝐧 𝒔𝒆𝒄𝒙 , 𝒙 ∈ (𝟎,

𝝅

𝟐
) 

 

 𝒇′(𝒙) = 𝒙𝒔𝒆𝒄𝟐𝒙 − 𝒕𝒂𝒏𝒙  

𝑳𝒆𝒕 𝒈(𝒙) = 𝒙𝒔𝒆𝒄𝟐𝒙 − 𝒕𝒂𝒏𝒙  𝒕𝒉𝒆𝒏 𝒈′(𝒙) = 𝟐𝒙𝒔𝒆𝒄𝟐𝒙 𝒕𝒂𝒏𝒙 > 0 𝑎𝑠 𝑥 ∈ (𝟎,
𝝅

𝟐
)  

𝒔𝒐 𝒈(𝒙)𝒊𝒔  𝒊𝒏𝒄𝒓𝒆𝒂𝒔𝒊𝒏𝒈 𝒂𝒏𝒅 𝒈(𝟎) = 𝟎 𝒔𝒐 𝒈(𝒙) > 𝑔(𝟎) 𝒐𝒓 𝒙𝒔𝒆𝒄𝟐𝒙 − 𝒕𝒂𝒏𝒙 > 0 
 

𝑭𝒓𝒐𝒎 𝒕𝒉𝒊𝒔 𝒓𝒆𝒔𝒖𝒍𝒕 𝒘𝒆 𝒄𝒂𝒏 𝒔𝒂𝒚 𝒇′(𝒙) = 𝒙𝒔𝒆𝒄𝟐𝒙 − 𝒕𝒂𝒏𝒙 > 0 𝑠𝑜 𝑓(𝒙)𝒊𝒏𝒄𝒓𝒆𝒂𝒔𝒊𝒏𝒈 
 

 𝒂𝒏𝒅 𝒇(𝟎) = 𝟎 𝒔𝒐 𝒇(𝒙) > 𝑓(𝟎)𝒐𝒓, 𝒙𝒕𝒂𝒏𝒙 − 𝟐 𝐥𝐧 (
𝟏

𝒄𝒐𝒔𝒙
) > 0 𝑜𝒓

𝒙𝒕𝒂𝒏𝒙

𝐥𝐧 (
𝟏

𝒄𝒐𝒔𝒙) 
> 2 (𝟏) 

𝑾𝒆 𝒌𝒏𝒐𝒘 𝒕𝒉𝒂𝒕 𝒊𝒏 𝒂𝒏𝒚 𝒕𝒓𝒊𝒂𝒏𝒈𝒍𝒆 ∑𝒕𝒂𝒏𝑨 = 𝒕𝒂𝒏𝑨. 𝒕𝒂𝒏𝑩. 𝒕𝒂𝒏𝑪 (𝟐) 

 
𝒙 𝒕𝒂𝒏𝟐𝒙

𝐥𝐧 (
𝟏

𝐜𝐨𝐬 𝒙)
+
𝒙 𝒕𝒂𝒏𝟐𝒙

𝐥𝐧 (
𝟏

𝐜𝐨𝐬 𝒙)
+
𝒙 𝒕𝒂𝒏𝟐𝒙

𝐥𝐧 (
𝟏

𝐜𝐨𝐬 𝒙)
=∑

𝒙 𝒕𝒂𝒏𝟐𝒙

𝐥𝐧 (
𝟏

𝐜𝐨𝐬 𝒙)
= 

 

=∑
𝒙 𝒕𝒂𝒏𝟐𝒙

𝐥𝐧 (
𝟏

𝐜𝐨𝐬 𝒙)
>
(𝟏)

∑𝟐𝒕𝒂𝒏𝒙 =
𝟐
 𝟐𝒕𝒂𝒏𝒙 ∙ 𝒕𝒂𝒏𝒚 ∙ 𝒕𝒂𝒏𝒛 

2073. 𝐈𝐟 𝒂, 𝐛 > 0 𝑎𝐧𝐝 𝐧 ∈ ℕ, 𝐧 ≥ 𝟐 𝐭𝐡𝐞𝐧 ∶ 

√
𝒂

𝐛

𝐧
+ √

𝐛

𝒂

𝐧

≤ √𝟐𝐧−𝟐(𝒂 + 𝐛) (
𝟏

𝒂
+
𝟏

𝐛
)

𝐧

 

  Proposed by Marin Chirciu-Romania 
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Solution by Soumava Chakraborty-Kolkata-India 

𝐋𝐞𝐭 
𝒂

𝐛
= 𝐭 𝒂𝐧𝐝 𝐭𝐡𝐞𝐧 ∶ √

𝒂

𝐛

𝐧
+ √

𝐛

𝒂

𝐧

≤
?
√𝟐𝐧−𝟐(𝒂 + 𝐛) (

𝟏

𝒂
+
𝟏

𝐛
)

𝐧

 

⇔ √𝐭
𝐧 +

𝟏

√𝐭
𝐧 ≤

?
√𝟐𝐧−𝟐. (𝟐 + 𝐭 +

𝟏

𝐭
)

𝐧

⇔ 𝟏+ 𝐭
𝟐
𝐧 ≤
?
√𝟐𝐧−𝟐. (𝟐𝐭 + 𝐭𝟐 + 𝟏)
𝐧

 

= 𝟐
𝐧−𝟐
𝐧 . (𝐭 + 𝟏)

𝟐
𝐧 ⇔ (

𝟏

𝐭 + 𝟏
)

𝟐
𝐧
+ (

𝐭

𝐭 + 𝟏
)

𝟐
𝐧
≤
?
𝟐
𝐧−𝟐
𝐧 ⇔ (

𝟏

𝐭 + 𝟏
)

𝟐
𝐧
+ (𝟏 −

𝟏

𝐭 + 𝟏
)

𝟐
𝐧
≤
?
𝟐
𝐧−𝟐
𝐧  

⇔ 𝐮
𝟐
𝐧 + (𝟏 − 𝐮)

𝟐
𝐧 ≤

?
⏟
(∗)

𝟐
𝐧−𝟐
𝐧  (𝐮 =

𝟏

𝐭 + 𝟏
; 𝟎 < 𝐮 < 1 ∵ 𝑡 > 0) 

𝐋𝐞𝐭 𝐅(𝐮) = 𝐮
𝟐
𝐧 + (𝟏 − 𝐮)

𝟐
𝐧 − 𝟐

𝐧−𝟐
𝐧  ∀ 𝐮 ∈ (𝟎, 𝟏) 𝒂𝐧𝐝 ∀ 𝐧 ∈ (ℕ∗ − {𝟏}); 𝐧 → 𝐟𝐢𝒙𝐞𝐝  

𝒂𝐧𝐝 𝐭𝐡𝐞𝐧 ∶ 𝐅 ′(𝐮) =
𝟐

𝐧
(𝐮

𝟐
𝐧
−𝟏 − (𝟏 − 𝐮)

𝟐
𝐧
−𝟏) 

⇒ 𝐅 ′(𝐮) =
(⦁) 𝟐

𝐧
. (𝟏 − 𝐮)

𝟐
𝐧
−𝟏. ((

𝐮

𝟏 − 𝐮
)

𝟐
𝐧
−𝟏

− 𝟏) 

𝐂𝒂𝐬𝐞 𝟏  𝟎 < 𝐮 ≤
𝟏

𝟐
 𝒂𝐧𝐝 𝐭𝐡𝐞𝐧 ∶ 𝟐𝐮 ≤ 𝟏 ⇒ 𝐮 ≤ 𝟏 − 𝐮 ⇒

𝐮

𝟏 − 𝐮
≤ 𝟏 

⇒ (
𝟐

𝐧
− 𝟏) . 𝐥𝐧

𝐮

𝟏 − 𝐮
≥ 𝟎 (∵

𝟐

𝐧
− 𝟏 ≤ 𝟎) ⇒ 𝐥𝐧((

𝐮

𝟏 − 𝐮
)

𝟐
𝐧
−𝟏

) ≥ 𝟎 

⇒
𝟐

𝐧
. (𝟏 − 𝐮)

𝟐
𝐧
−𝟏. ((

𝐮

𝟏 − 𝐮
)

𝟐
𝐧
−𝟏

− 𝟏) ≥ 𝟎 (∵ 𝟎 < 𝐮 ≤
𝟏

𝟐
< 1 ⇒ 1− 𝐮 > 0) ⇒

𝐯𝐢𝒂 (⦁)

 

𝐅 ′(𝐮) ≥ 𝟎 ⇒ 𝐅(𝐮) 𝐢𝐬 ↑ 𝐨𝐧 (𝟎,
𝟏

𝟐
] ⇒ 𝐅(𝐮) ≤ 𝐅(

𝟏

𝟐
) = 𝟐(

𝟏

𝟐
)

𝟐
𝐧
− 𝟐

𝐧−𝟐
𝐧 = 𝟎 ∀ 𝐮 ∈ (𝟎,

𝟏

𝟐
] 

𝐂𝒂𝐬𝐞 𝟐  
𝟏

𝟐
≤ 𝐮 < 1 𝑎𝐧𝐝 𝐭𝐡𝐞𝐧 ∶ 𝟐𝐮 ≥ 𝟏 ⇒ 𝐮 ≥ 𝟏 − 𝐮 ⇒

𝐮

𝟏 − 𝐮
≥ 𝟏 

⇒ (
𝟐

𝐧
− 𝟏) . 𝐥𝐧

𝐮

𝟏 − 𝐮
≤ 𝟎 (∵

𝟐

𝐧
− 𝟏 ≤ 𝟎) ⇒ 𝐥𝐧((

𝐮

𝟏 − 𝐮
)

𝟐
𝐧
−𝟏

) ≤ 𝟎 

⇒
𝟐

𝐧
. (𝟏 − 𝐮)

𝟐
𝐧
−𝟏. ((

𝐮

𝟏 − 𝐮
)

𝟐
𝐧
−𝟏

− 𝟏) ≤ 𝟎 (∵ 𝟎 < 𝐮 ≤
𝟏

𝟐
< 1 ⇒ 1− 𝐮 > 0) ⇒

𝐯𝐢𝒂 (⦁)

 

𝐅 ′(𝐮) ≤ 𝟎 ⇒ 𝐅(𝐮) 𝐢𝐬 ↓ 𝐨𝐧 [
𝟏

𝟐
, 𝟏) ⇒ 𝐅(𝐮) ≤ 𝐅(

𝟏

𝟐
) = 𝟐(

𝟏

𝟐
)

𝟐
𝐧
− 𝟐

𝐧−𝟐
𝐧 = 𝟎 ∀ 𝐮 ∈ [

𝟏

𝟐
, 𝟏) 

∴ 𝐜𝐨𝐦𝐛𝐢𝐧𝐢𝐧𝐠 𝐜𝒂𝐬𝐞𝐬 𝟏 𝒂𝐧𝐝 𝟐, 𝐅(𝐮) ≤ 𝟎 ∀ 𝐮 ∈ (𝟎, 𝟏) 𝒂𝐧𝐝 ∀ 𝐧 ∈ (ℕ∗ − {𝟏}); 𝐧 → 𝐟𝐢𝒙𝐞𝐝 
⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 ∀ 𝐮 ∈ (𝟎, 𝟏) 𝒂𝐧𝐝 ∀ 𝐧 ∈ (ℕ∗ − {𝟏}) 
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∴ √
𝒂

𝐛

𝐧
+ √

𝐛

𝒂

𝐧

≤ √𝟐𝐧−𝟐(𝒂 + 𝐛) (
𝟏

𝒂
+
𝟏

𝐛
)

𝐧

 ∀ 𝒂, 𝐛 > 0 ∧  𝐧 ∈ ℕ│𝐧 ≥ 𝟐, 

′′ =′′  𝐢𝐟𝐟 𝒂 = 𝐛 (𝐐𝐄𝐃) 

2074. If 𝒂, 𝒃 > 0 then: 
 

𝟐

𝒂 + 𝒃
+

𝟔

𝟒𝒂 + 𝒃 + 𝟑
+

𝟔

𝟒𝒃 + 𝒂 + 𝟑
≤
𝟏

𝒂
+
𝟏

𝒃
+

𝟑

𝒂 + 𝒃 + 𝟑
 

 
Proposed by Marin Chirciu-Romania 

Solution by Tapas Das-India 
 

𝟐

𝒂 + 𝒃
≤

𝑨𝑴−𝑯𝑴 𝟏

𝟐
(
𝟏

𝒂
+
𝟏

𝒃
)  (𝟏) 

 
𝟔

𝟒𝒂 + 𝒃 + 𝟑
=

𝟔

𝟑𝒂 + (𝒂 + 𝒃 + 𝟑)
=
𝟔

𝟒

𝟒

𝟑𝒂 + (𝒂 + 𝒃 + 𝟑)
≤

𝑨𝑴−𝑯𝑴 𝟑

𝟐
(
𝟏

𝟑𝒂
+

𝟏

𝒂 + 𝒃 + 𝟑
) (𝟐) 

 
𝟔

𝟒𝒃 + 𝒂 + 𝟑
=

𝟔

𝟑𝒃 + (𝒂 + 𝒃 + 𝟑)
=
𝟔

𝟒

𝟒

𝟑𝒃 + (𝒂+ 𝒃 + 𝟑)
≤

𝑨𝑴−𝑯𝑴 𝟑

𝟐
(
𝟏

𝟑𝒃
+

𝟏

𝒂 + 𝒃 + 𝟑
) (𝟑) 

 
𝟐

𝒂 + 𝒃
+

𝟔

𝟒𝒂 + 𝒃 + 𝟑
+

𝟔

𝟒𝒃 + 𝒂 + 𝟑
≤

(𝟏),(𝟐),(𝟑)

  

 

≤
𝟏

𝟐
(
𝟏

𝒂
+
𝟏

𝒃
) +

𝟑

𝟐
(
𝟏

𝟑𝒂
+

𝟏

𝒂 + 𝒃 + 𝟑
) +

𝟑

𝟐
(
𝟏

𝟑𝒃
+

𝟏

𝒂 + 𝒃 + 𝟑
) =

𝟏

𝒂
+
𝟏

𝒃
+

𝟑

𝒂 + 𝒃 + 𝟑
 

 
Equality holds for  a=b=1. 

 

2075. If 𝒂, 𝒃, 𝒄 > 0, 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 = 𝟑 then: 
 

(𝒂𝟐 + 𝒂𝒃 + 𝒃𝟐)𝒄(𝒃𝟐 + 𝒃𝒄 + 𝒄𝟐)𝒂(𝒄𝟐 + 𝒄𝒂 + 𝒂𝟐)𝒃 ≤ 𝟐𝟕  
 

Proposed by Nguyen Hung Cuong-Vietnam 
Solution by Tapas Das-India 
 

𝟑 = 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 =
𝒂𝟐

𝟏
+
𝒃𝟐

𝟏
+
𝒄𝟐

𝟏
≥

𝑹𝒂𝒅𝒐𝒏 (𝒂 + 𝒃 + 𝒄)𝟐

𝟑
 𝒐𝒓, 𝒂 + 𝒃 + 𝒄 ≤ 𝟑 (𝟏) 

 

∑𝒄(𝒂𝟐 + 𝒂𝒃 + 𝒃𝟐) =∑𝒄(𝒂𝟐 + 𝒃𝟐) + 𝟑𝒂𝒃𝒄 =∑𝒂∑𝒂𝟐 −∑𝒂𝟑 + 𝟑𝒂𝒃𝒄 ≤
𝑨𝑴−𝑮𝑴
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≤∑𝒂∑𝒂𝟐 − 𝟑𝒂𝒃𝒄 + 𝟑𝒂𝒃𝒄 =∑𝒂∑𝒂𝟐 

 

(𝒂𝟐 + 𝒂𝒃 + 𝒃𝟐)𝒄(𝒃𝟐 + 𝒃𝒄 + 𝒄𝟐)𝒂(𝒄𝟐 + 𝒄𝒂 + 𝒂𝟐)𝒃 ≤
𝑨𝑴−𝑮𝑴

 
 

≤ (
∑ 𝒄(𝒂𝟐 + 𝒂𝒃 + 𝒃𝟐)

𝒂 + 𝒃 + 𝒄
)

𝒂+𝒃+𝒄

≤ (
∑𝒂∑𝒂𝟐

𝒂 + 𝒃 + 𝒄
)

𝒂+𝒃+𝒄

≤
(𝟏)

(𝟑)𝟑 = 𝟐𝟕 

 
Equality holds for  a=b=c=1. 

 

2076. If 𝒂, 𝒃, 𝒄 > 0, 𝒂𝟒 + 𝒃𝟒 + 𝒄𝟒 = 𝟑 then: 
 

(𝒂𝟑 + 𝒃𝟑)𝒄(𝒃𝟑 + 𝒄𝟑)𝒂(𝒄𝟑 + 𝒂𝟑)𝒃 ≤ 𝟖 
 

Proposed by Nguyen Hung Cuong-Vietnam 
Solution by Tapas Das-India 
 

(∑𝒂𝟐)𝟐

𝟑
≤
𝑪𝑩𝑺

 (𝒂𝟒 + 𝒃𝟒 + 𝒄𝟒) = 𝟑 𝒐𝒓∑𝒂𝟐 ≤ 𝟑 (𝟏) 

 

(∑𝒂𝟒) (∑𝒂𝟐) ≥
𝑪−𝑺

 (∑𝒂𝟑)
𝟐

 𝒐𝒓 𝟑 × 𝟑 ≥
(𝟏)

 (∑𝒂𝟑)
𝟐

  

 

∑𝒂𝟑 ≤ 𝟑 (𝟐) 

 

∑𝒂𝟒 ≥
𝑪𝒉𝒆𝒃𝒚𝒔𝒉𝒆𝒗 𝟏

𝟑
(∑𝒂𝟑) (∑𝒂)  (𝟑) 

 

 ∑𝒂 ≤ √𝟑((∑𝒂𝟐)) ≤
(𝟏)

 𝟑 (𝟒) 

 

∑𝒂(𝒃𝟑 + 𝒄𝟑) = (∑𝒂)(∑𝒂𝟑) − (∑𝒂𝟒) ≤
(𝟑) 𝟐

𝟑
(∑𝒂)(∑𝒂𝟑) 

 

(𝒂𝟑 + 𝒃𝟑)𝒄(𝒃𝟑 + 𝒄𝟑)𝒂(𝒄𝟑 + 𝒂𝟑)𝒃 ≤
𝑨𝑴−𝑮𝑴

 (
∑𝒂(𝒃𝟑 + 𝒄𝟑)

𝒂 + 𝒃 + 𝒄
)

𝒂+𝒃+𝒄

≤ 
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≤ (

𝟐
𝟑
(∑𝒂)(∑𝒂𝟑)

𝒂 + 𝒃 + 𝒄
)

𝒂+𝒃+𝒄

≤
(𝟐)&(4)

 𝟐𝟑 = 𝟖 

 
Equality holds for  a=b=c=1. 

 
2077. 𝐈𝐟 𝒙, 𝐲, 𝐳 > 0, 𝒙𝐲 + 𝐲𝐳 + 𝐳𝒙 = 𝟑 𝒂𝐧𝐝 𝛌 ≤ 𝟔 𝐭𝐡𝐞𝐧 ∶ 

∑𝒙𝟑

𝐜𝐲𝐜

+ 𝛌𝒙𝐲𝐳 ≥ 𝛌 + 𝟑 

  Proposed by Marin Chirciu-Romania 

Solution by Soumava Chakraborty-Kolkata-India 

(∑𝒙

𝐜𝐲𝐜

)

𝟐

≥ 𝟑∑𝒙𝐲

𝐜𝐲𝐜

= 𝟗 ⇒∑𝒙

𝐜𝐲𝐜

≥ 𝟑 ⇒ (∑𝒙

𝐜𝐲𝐜

)(∑𝒙𝐲

𝐜𝐲𝐜

) ≥ 𝟗 →①  

𝒂𝐧𝐝 𝐬𝐨, 𝛌 + 𝟑 ≤
𝛌 + 𝟑

𝟗
(∑𝒙

𝐜𝐲𝐜

)(∑𝒙𝐲

𝐜𝐲𝐜

) ≤
?
∑𝒙𝟑

𝐜𝐲𝐜

+ 𝛌𝒙𝐲𝐳 

⇔ 𝛌((∑𝒙

𝐜𝐲𝐜

)(∑𝒙𝐲

𝐜𝐲𝐜

) − 𝟗𝒙𝐲𝐳) ≤
?
𝟗∑𝒙𝟑

𝐜𝐲𝐜

− 𝟑(∑𝒙

𝐜𝐲𝐜

)(∑𝒙𝐲

𝐜𝐲𝐜

)  𝒂𝐧𝐝 ∵ 𝛌 ≤ 𝟔 

𝒂𝐧𝐝 ∵ (∑𝒙

𝐜𝐲𝐜

)(∑𝒙𝐲

𝐜𝐲𝐜

) − 𝟗𝒙𝐲𝐳 ≥
𝐀𝐌−𝐆𝐌

𝟎 ∴ 𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 

𝟔((∑𝒙

𝐜𝐲𝐜

)(∑𝒙𝐲

𝐜𝐲𝐜

) − 𝟗𝒙𝐲𝐳) ≤
?
𝟗∑𝒙𝟑

𝐜𝐲𝐜

− 𝟑(∑𝒙

𝐜𝐲𝐜

)(∑𝒙𝐲

𝐜𝐲𝐜

) 

⇔∑𝒙𝟑

𝐜𝐲𝐜

+ 𝟑𝒙𝐲𝐳 ≥
?
∑𝒙𝟐𝐲

𝐜𝐲𝐜

+∑𝒙𝐲𝟐

𝐜𝐲𝐜

→ 𝐭𝐫𝐮𝐞 𝐯𝐢𝒂 𝐒𝐜𝐡𝐮𝐫 ∴ ∑𝒙𝟑

𝐜𝐲𝐜

+ 𝛌𝒙𝐲𝐳 ≥ 𝛌 + 𝟑 

∀ 𝒙, 𝐲, 𝐳 > 0│𝒙𝐲 + 𝐲𝐳 + 𝐳𝒙 = 𝟑 ∧  𝛌 ≤ 𝟔, ′′ =′′  𝐢𝐟𝐟 𝒙 = 𝐲 = 𝐳 = 𝟏 (𝐐𝐄𝐃) 
 

2078. 𝐅𝐨𝐫 𝒂, 𝐛, 𝐜 ≥ 𝟎, 𝐩𝐫𝐨𝐯𝐞 𝐭𝐡𝒂𝐭 ∶ 

① 𝒂𝟐𝐛 + 𝐛𝟐𝐜 + 𝐜𝟐𝒂 ≤
𝟏

𝟑𝟎
(𝒂 + 𝐛 + 𝐜)(𝟕𝒂𝟐 + 𝟕𝐛𝟐 + 𝟕𝐜𝟐 + 𝟑𝒂𝐛 + 𝟑𝐛𝐜 + 𝟑𝐜𝒂) 
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② 𝒂𝟐𝐛 + 𝐛𝟐𝐜 + 𝐜𝟐𝒂 ≤
𝟗

𝟖
(𝒂 + 𝐛)(𝐛 + 𝐜)(𝐜 + 𝒂) −

𝟐(𝒂𝐛 + 𝐛𝐜 + 𝐜𝒂)𝟐

𝒂 + 𝐛 + 𝐜
 

  Proposed by Dang Ngoc Minh-Vietnam 

Solution by Soumava Chakraborty-Kolkata-India 

𝐋𝐞𝐭 𝐅(𝒂, 𝐛, 𝐜) = (∑𝒂

𝐜𝐲𝐜

)(𝟕∑𝒂𝟐

𝐜𝐲𝐜

+ 𝟑∑𝒂𝐛

𝐜𝐲𝐜

) − 𝟑𝟎∑𝒂𝟐𝐛

𝐜𝐲𝐜

; 𝐭𝐡𝐞𝐧 ∶ 

𝐅(𝟏, 𝟏, 𝟏) = 𝟎 → (∗) 𝒂𝐧𝐝 𝐅(𝒂, 𝐛, 𝟎) = (𝒂 + 𝐛)(𝟕(𝒂𝟐 + 𝐛𝟐) + 𝟑𝒂𝐛) − 𝟑𝟎𝒂𝟐𝐛 = 
(𝟐𝟏𝒂 + 𝟏𝟎𝐛)(𝟑𝒂 − 𝟓𝐛)𝟐 + 𝟒𝟓𝒂𝐛𝟐 − 𝟔𝟏𝐛𝟑

𝟑
≥ 𝟎 𝐰𝐡𝐞𝐧 ∶ 𝟒𝟓𝒂 ≥ 𝟔𝟏𝐛 𝒂𝐧𝐝 𝐰𝐡𝐞𝐧 ∶ 

𝟒𝟓𝒂 < 61𝐛, 𝐅(𝒂, 𝐛, 𝟎) =
(𝟑𝟓𝒂 + 𝟏𝟐𝐛)(𝟓𝒂 − 𝟖𝐛)𝟐 + 𝐛𝟐(𝟏𝟎𝟕𝐛 − 𝟑𝟎𝒂)

𝟓
≥ 𝟎 𝐬𝐢𝐧𝐜𝐞 ∶ 

𝟑𝟎𝒂 < 30.
𝟔𝟏𝐛

𝟒𝟓
< 60𝐛 < 107𝐛 𝒂𝐧𝐝 𝐬𝐨, 𝐅(𝒂, 𝐛, 𝟎) ≥ 𝟎 ∀ 𝒂, 𝐛 ≥ 𝟎 → (∗∗) 

∴ (∗) 𝒂𝐧𝐝 (∗∗) ⇒ 𝐅(𝒂, 𝐛, 𝐜) ≥ 𝟎 ∀ 𝒂, 𝐛, 𝐜 ≥ 𝟎 ⇒① 𝐢𝐬 𝐭𝐫𝐮𝐞 ∀ 𝒂, 𝐛, 𝐜 ≥ 𝟎 𝒂𝐧𝐝 𝒂𝐠𝒂𝐢𝐧, 
𝟗(𝒂 + 𝐛)(𝐛 + 𝐜)(𝐜 + 𝒂)(𝒂 + 𝐛 + 𝐜) − 𝟏𝟔(𝒂𝐛 + 𝐛𝐜 + 𝐜𝒂)𝟐 − 

𝟖(𝒂 + 𝐛 + 𝐜)(𝒂𝟐𝐛 + 𝐛𝟐𝐜 + 𝐜𝟐𝒂) ≥
?
𝟎 

⇔ −
𝟐

𝟗
∑𝒂𝟐𝐛𝟐

𝐜𝐲𝐜

−
𝟒

𝟐𝟕
𝒂𝐛𝐜∑𝒂

𝐜𝐲𝐜

+
𝟏

𝟐𝟕
∑𝒂𝟑𝐛

𝐜𝐲𝐜

+
𝟏

𝟑
∑𝒂𝐛𝟑

𝐜𝐲𝐜

≥
?
𝟎 

⇔ 𝐀∑𝒂𝟐𝐛𝟐

𝐜𝐲𝐜

+ 𝐁.𝒂𝐛𝐜∑𝒂

𝐜𝐲𝐜

+ 𝐂∑𝒂𝟑𝐛

𝐜𝐲𝐜

+ 𝐃∑𝒂𝐛𝟑

𝐜𝐲𝐜

≥
?
⏟
(⦁)

𝟎 

𝐰𝐡𝐞𝐫𝐞 𝐀 = −
𝟐

𝟗
,𝐁 = −

𝟒

𝟐𝟕
, 𝐂 =

𝟏

𝟐𝟕
,𝐃 =

𝟏

𝟑
 𝒂𝐧𝐝 ∵ 𝟏 + 𝐀 + 𝐁+ 𝐂 + 𝐃 = 𝟏 ≥ 𝟎 

∴ 𝐢𝐧 𝐨𝐫𝐝𝐞𝐫 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 (⦁), 𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 

𝟐(𝟏 + 𝐀) ≥
?
𝐁 + 𝐂 + 𝐃 + 𝐂𝟐 + 𝐂𝐃 + 𝐃𝟐 ⇔

𝟒

𝟑
≥
? 𝟏

𝟕𝟐𝟗
+
𝟏

𝟗
+
𝟏

𝟖𝟏
=
𝟗𝟏

𝟕𝟐𝟗
→ 𝐭𝐫𝐮𝐞 

(𝐬𝐭𝐫𝐢𝐜𝐭 𝐢𝐧𝐞𝐪𝐮𝒂𝒍𝐢𝐭𝐲) 𝒂𝐧𝐝 ∵ 𝐋𝐇𝐒 𝐨𝐟 (⦁) = 𝟎 𝐟𝐨𝐫 𝒂 = 𝐛 = 𝐜 ∴ (⦁) ⇒② 𝐢𝐬 𝐭𝐫𝐮𝐞  

∀ 𝒂, 𝐛, 𝐜 ≥ 𝟎 𝒂𝐧𝐝 𝐡𝐞𝐧𝐜𝐞,① 𝒂𝐧𝐝 ② 𝒂𝐫𝐞 𝐛𝐨𝐭𝐡 𝐭𝐫𝐮𝐞  ∀ 𝒂, 𝐛, 𝐜 ≥ 𝟎, 
′′ =′′ 𝐟𝐨𝐫 𝐛𝐨𝐭𝐡 ① 𝒂𝐧𝐝 ② 𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 (𝐐𝐄𝐃) 

 

2079. If 𝒂, 𝒃, 𝒄 > 0, 𝒂𝟓 + 𝒃𝟓 + 𝒄𝟓 = 𝟑  then: 

(𝒂𝟓 + 𝟏)
𝟐

𝒃𝟑 + 𝒃𝟐
+
(𝒃𝟓 + 𝟏)

𝟐

𝒄𝟑 + 𝒄𝟐
+
(𝒄𝟓 + 𝟏)

𝟐

𝒂𝟑 + 𝒂𝟐
≥ 𝟔 

Proposed by Gheorghe Crăciun-Romania 
Solution by Mirsadix Muzefferov-Azerbaijan 

(𝒂𝟓 + 𝟏)
𝟐

𝒃𝟑 + 𝒃𝟐
+
(𝒃𝟓 + 𝟏)

𝟐

𝒄𝟑 + 𝒄𝟐
+
(𝒄𝟓 + 𝟏)

𝟐

𝒂𝟑 + 𝒂𝟐
≥⏞

𝑩𝒆𝒓𝒈𝒔𝒕𝒓𝒐𝒎
(𝒂𝟓 + 𝒃𝟓 + 𝒄𝟓 + 𝟑)

𝟐

∑ (𝒂𝟑 + 𝒂𝟐)𝒄𝒚𝒄
=

(𝟑 + 𝟑)𝟐

∑ (𝒂𝟑 + 𝒂𝟐)𝒄𝒚𝒄
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𝑳𝒆𝒕′𝒔   𝒔𝒆𝒆  𝒕𝒉𝒆  𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆 ∶ 
𝒂 > 0  

(𝒂𝟓 + 𝟏) − (𝒂𝟑 + 𝒂𝟐) = 𝒂𝟑(𝒂𝟐 − 𝟏) − (𝒂𝟐 − 𝟏) = 
(𝒂𝟐 − 𝟏)(𝒂𝟑 − 𝟏) = (𝒂 − 𝟏)𝟐(𝒂 + 𝟏)(𝒂𝟐 + 𝒂 + 𝟏) ≥ 𝟎 → 𝒂𝟑 + 𝒂𝟐 ≤ 𝒂𝟓 + 𝟏 

∑
(𝒂𝟓 + 𝟏)

𝟐

𝒃𝟑 + 𝒃𝟐
≥

𝟑𝟔

∑ (𝒂𝟑 + 𝒂𝟐)𝒄𝒚𝒄
≥

𝟑𝟔

∑ (𝒂𝟓 + 𝟏)𝒄𝒚𝒄
𝒄𝒚𝒄

=
𝟑𝟔

𝟑 + 𝟑
= 𝟔 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚  𝒉𝒐𝒍𝒅𝒔  𝒇𝒐𝒓 ∶ 𝒂 = 𝒃 = 𝒄 = 𝟏. 

2080. If 𝒂, 𝒃, 𝒄 > 0 then: 

∑(𝒃+ 𝒄)(𝒂𝟐 + 𝒃𝟐 + 𝒂𝒃)

𝒄𝒚𝒄

≥
𝟗

𝟒
(𝒂 + 𝒃)(𝒂 + 𝒄)(𝒃 + 𝒄) 

Proposed by Gheorghe Crăciun-Romania 
Solution by Mirsadix Muzefferov-Azerbaijan 

𝑳𝒆𝒕 ∶   𝒂 + 𝒃 = 𝒙 > 0 , 𝑏 + 𝑐 = 𝑦 > 0, 𝑎 + 𝑐 = 𝑧 > 0 

𝑻𝒉𝒆𝒏:  𝒂𝒃 ≤
𝒙𝟐

𝟒
 , 𝒃𝒄 ≤

𝒚𝟐

𝟒
 , 𝒂𝒄 ≤

𝒛𝟐

𝟒
  (∗)  

𝑻𝒉𝒆   𝒆𝒙𝒑𝒓𝒆𝒔𝒔𝒊𝒐𝒏   𝒃𝒆𝒄𝒐𝒎𝒆𝒔   𝒂𝒔   𝒇𝒐𝒍𝒍𝒐𝒘𝒔:  

𝒚(𝒙𝟐 − 𝒂𝒃) + 𝒛(𝒚𝟐 − 𝒃𝒄) + 𝒙(𝒛𝟐 − 𝒂𝒄) ≥
𝟗

𝟒
𝒙𝒚𝒛 

𝒚𝒙𝟐 + 𝒛𝒚𝟐 + 𝒙𝒛𝟐 − (𝒚𝒂𝒃 + 𝒛𝒃𝒄 + 𝒙𝒂𝒄) ≥⏞
(∗)

 

≥ 𝒚𝒙𝟐 + 𝒛𝒚𝟐 + 𝒙𝒛𝟐 − 𝒚
𝒙𝟐

𝟒
− 𝒛

𝒚𝟐

𝟒
− 𝒙

𝒛𝟐

𝟒
= 

=
𝟑

𝟒
𝒚𝒙𝟐 +

𝟑

𝟒
𝒛𝒚𝟐 +

𝟑

𝟒
𝒙𝒛𝟐 ≥⏞

𝑨𝑴−𝑮𝑴 𝟑

𝟒
. 𝟑√𝒙𝟑𝒚𝟑𝒛𝟑

𝟑
=
𝟗

𝟒
𝒙𝒚𝒛   

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚  𝒉𝒐𝒍𝒅𝒔  𝒇𝒐𝒓 ∶ 𝒂 = 𝒃 = 𝒄. 
 

2081. 𝐈𝐟 𝒂, 𝐛, 𝐜, 𝐝 > 0, 𝑡ℎ𝑒𝑛 𝑝𝑟𝑜𝑣𝑒 𝑡ℎ𝑎𝐭 ∶ 

𝒂𝐛𝐜 + 𝐛𝐜𝐝 + 𝐜𝐝𝒂 + 𝐝𝒂𝐛

𝒂 + 𝐛 + 𝐜 + 𝐝
≤
𝟏

𝟒
. √(𝒂 + 𝐛)(𝒂 + 𝐜)(𝒂 + 𝐝)(𝐛 + 𝐜)(𝐛 + 𝐝)(𝐜 + 𝐝)
𝟑

 

  Proposed by Nguyen Hung Cuong-Vietnam 

Solution by Soumava Chakraborty-Kolkata-India 

𝟑(𝒂 + 𝐛 + 𝐜 + 𝐝) = 

= (𝒂 + 𝐛) + (𝒂 + 𝐜) + (𝒂 + 𝐝) + (𝐛 + 𝐜) + (𝐛 + 𝐝) + (𝐜 + 𝐝) ≥
𝐀𝐌−𝐆𝐌

 

≥ 𝟔. √(𝒂 + 𝐛)(𝒂 + 𝐜)(𝒂 + 𝐝)(𝐛 + 𝐜)(𝐛 + 𝐝)(𝐜 + 𝐝)
𝟔

 

⇒ (𝒂 + 𝐛 + 𝐜 + 𝐝).
𝟏

𝟒
. √(𝒂 + 𝐛)(𝒂 + 𝐜)(𝒂 + 𝐝)(𝐛 + 𝐜)(𝐛 + 𝐝)(𝐜 + 𝐝)
𝟑

≥ 
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𝟏

𝟐
. √(𝒂 + 𝐛)(𝒂 + 𝐜)(𝒂 + 𝐝)(𝐛 + 𝐜)(𝐛 + 𝐝)(𝐜 + 𝐝) 

=
𝟏

𝟐
. √((𝒂 + 𝐛)(𝐛 + 𝐜)(𝐜 + 𝐝)). ((𝒂 + 𝐜)(𝒂 + 𝐝)(𝐛 + 𝐝)) 

=

(√
(𝒂𝐛𝐜 + 𝐛𝐜𝐝 + 𝐜𝐝𝒂 + 𝐝𝒂𝐛)

+(𝐜𝟐(𝒂 + 𝐛) + 𝐛𝟐(𝐜 + 𝐝))
) .(√

(𝒂𝐛𝐜 + 𝐛𝐜𝐝 + 𝐜𝐝𝒂 + 𝐝𝒂𝐛)

+(𝒂𝟐(𝐛 + 𝐝) + 𝐝𝟐(𝒂 + 𝐜))
)

𝟐
 

≥
𝐑𝐞𝐯𝐞𝐫𝐬𝐞 𝐂𝐁𝐒 𝒂𝐛𝐜 + 𝐛𝐜𝐝 + 𝐜𝐝𝒂 + 𝐝𝒂𝐛 +√(𝐜

𝟐(𝒂 + 𝐛) + 𝐛𝟐(𝐜 + 𝐝)). (𝒂𝟐(𝐛 + 𝐝) + 𝐝𝟐(𝒂 + 𝐜))

𝟐
 

≥
?
𝒂𝐛𝐜 + 𝐛𝐜𝐝 + 𝐜𝐝𝒂 + 𝐝𝒂𝐛 

⇔ √(𝐜𝟐(𝒂 + 𝐛) + 𝐛𝟐(𝐜 + 𝐝)). (𝒂𝟐(𝐛 + 𝐝) + 𝐝𝟐(𝒂 + 𝐜)) ≥
?
⏟
(∗)

𝒂𝐛𝐜 + 𝐛𝐜𝐝 + 𝐜𝐝𝒂 + 𝐝𝒂𝐛 

𝐂𝒂𝐬𝐞 𝟏  𝒂𝐜 + 𝐛𝐝 ≥ 𝒂𝐛 + 𝐜𝐝 𝒂𝐧𝐝 𝐭𝐡𝐞𝐧 ∶ 𝐋𝐇𝐒 𝐨𝐟 (∗) ≥
𝐑𝐞𝐯𝐞𝐫𝐬𝐞 𝐂𝐁𝐒

 

𝐜𝒂.√(𝒂 + 𝐛)(𝐛 + 𝐝) + 𝐛𝐝. √(𝐜 + 𝐝)(𝒂 + 𝐜) 

= 𝐜𝒂.√(𝐛 + 𝒂)(𝐛 + 𝐝) + 𝐛𝐝. √(𝐜 + 𝐝)(𝐜 + 𝒂) ≥
𝐑𝐞𝐯𝐞𝐫𝐬𝐞 𝐂𝐁𝐒

 

𝐜𝒂. (𝐛 + √𝒂𝐝) + 𝐛𝐝. (𝐜 + √𝒂𝐝) ≥
?
𝒂𝐛𝐜 + 𝐛𝐜𝐝 + 𝐜𝐝𝒂 + 𝐝𝒂𝐛 

⇔ √𝒂𝐝. (𝐜𝒂 + 𝐛𝐝) ≥
?
𝒂𝐝(𝐛 + 𝐜) ⇔ 𝐜𝒂 + 𝐛𝐝 ≥

?
⏟
①

√𝒂𝐝. (𝐛 + 𝐜) 𝒂𝐧𝐝 ∵ √𝒂𝐝 ≤
𝐀𝐌−𝐆𝐌 𝒂 + 𝐝

𝟐
 

∴ 𝐢𝐧 𝐨𝐫𝐝𝐞𝐫 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ①, 𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 𝟐(𝒂𝐜 + 𝐛𝐝 ) ≥
?
(𝒂 + 𝐝)(𝐛 + 𝐜) 

= 𝒂𝐛 + 𝒂𝐜 + 𝐛𝐝 + 𝐜𝐝 ⇔ 𝒂𝐜 + 𝐛𝐝 ≥
?
𝒂𝐛 + 𝐜𝐝 → 𝐭𝐫𝐮𝐞 ⇒① ⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 

𝐂𝒂𝐬𝐞 𝟐  𝒂𝐛 + 𝐜𝐝 ≥ 𝒂𝐜 + 𝐛𝐝 𝒂𝐧𝐝 𝐭𝐡𝐞𝐧 ∶ 𝐋𝐇𝐒 𝐨𝐟 (∗) ≥
𝐑𝐞𝐯𝐞𝐫𝐬𝐞 𝐂𝐁𝐒

 

𝐜𝐝.√(𝒂 + 𝐛)(𝒂 + 𝐜) + 𝒂𝐛.√(𝐛 + 𝐝)(𝐜 + 𝐝) 

= 𝐜𝐝. √(𝒂 + 𝐛)(𝒂 + 𝐜) + 𝒂𝐛. √(𝐝 + 𝐛)(𝐝 + 𝐜) ≥
𝐑𝐞𝐯𝐞𝐫𝐬𝐞 𝐂𝐁𝐒

 

𝐜𝐝. (𝒂 + √𝐛𝐜) + 𝒂𝐛. (𝐝 + √𝐛𝐜) ≥
?
𝒂𝐛𝐜 + 𝐛𝐜𝐝 + 𝐜𝐝𝒂 + 𝐝𝒂𝐛 

⇔ √𝐛𝐜. (𝒂𝐛 + 𝐜𝐝) ≥
?
𝐛𝐜(𝒂 + 𝐝) ⇔ 𝒂𝐛 + 𝐜𝐝 ≥

?
⏟
②

√𝐛𝐜. (𝒂 + 𝐝) 𝒂𝐧𝐝 ∵ √𝐛𝐜 ≤
𝐀𝐌−𝐆𝐌 𝐛 + 𝐜

𝟐
 

∴ 𝐢𝐧 𝐨𝐫𝐝𝐞𝐫 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ②, 𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 𝟐(𝒂𝐛 + 𝐜𝐝 ) ≥
?
(𝐛 + 𝐜)(𝒂 + 𝐝) 

= 𝒂𝐛 + 𝒂𝐜 + 𝐛𝐝 + 𝐜𝐝 ⇔ 𝒂𝐛 + 𝐜𝐝 ≥
?
𝒂𝐜 + 𝐛𝐝 → 𝐭𝐫𝐮𝐞 ⇒② ⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 

∴ 𝐜𝐨𝐦𝐛𝐢𝐧𝐢𝐧𝐠 𝐛𝐨𝐭𝐡 𝐜𝒂𝐬𝐞𝐬, (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 ∀ 𝒂, 𝐛, 𝐜, 𝐝 > 0 𝑎𝐧𝐝 𝐬𝐨, 
𝒂𝐛𝐜 + 𝐛𝐜𝐝 + 𝐜𝐝𝒂 + 𝐝𝒂𝐛

𝒂 + 𝐛 + 𝐜 + 𝐝
≤
𝟏

𝟒
. √(𝒂 + 𝐛)(𝒂 + 𝐜)(𝒂 + 𝐝)(𝐛 + 𝐜)(𝐛 + 𝐝)(𝐜 + 𝐝)
𝟑

 

∀ 𝒂, 𝐛, 𝐜, 𝐝 > 0, ′′ =′′ 𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 = 𝐝 (𝐐𝐄𝐃) 
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2082. 𝐈𝐟 𝒂, 𝐛, 𝐜, 𝐝 > 0, 𝑡ℎ𝑒𝑛 𝑝𝑟𝑜𝑣𝑒 𝑡ℎ𝑎𝐭 ∶ 

𝒂𝐛𝐜 + 𝐛𝐜𝐝 + 𝐜𝐝𝒂 + 𝐝𝒂𝐛

𝒂 + 𝐛 + 𝐜 + 𝐝
≤ 

≤
𝟏

𝟒
. √(𝒂 + 𝐛)(𝒂 + 𝐜)(𝒂 + 𝐝)(𝐛 + 𝐜)(𝐛 + 𝐝)(𝐜 + 𝐝)
𝟑

≤
(𝒂 + 𝐛 + 𝐜 + 𝐝)𝟐

𝟏𝟔
 

  Proposed by Nguyen Hung Cuong-Vietnam 

Solution by Soumava Chakraborty-Kolkata-India 

𝟑(𝒂 + 𝐛 + 𝐜 + 𝐝) = 

= (𝒂 + 𝐛) + (𝒂 + 𝐜) + (𝒂 + 𝐝) + (𝐛 + 𝐜) + (𝐛 + 𝐝) + (𝐜 + 𝐝) ≥
𝐀𝐌−𝐆𝐌

 

𝟔. √(𝒂 + 𝐛)(𝒂 + 𝐜)(𝒂 + 𝐝)(𝐛 + 𝐜)(𝐛 + 𝐝)(𝐜 + 𝐝)
𝟔

 

⇒ (𝒂 + 𝐛 + 𝐜 + 𝐝).
𝟏

𝟒
. √(𝒂 + 𝐛)(𝒂 + 𝐜)(𝒂 + 𝐝)(𝐛 + 𝐜)(𝐛 + 𝐝)(𝐜 + 𝐝)
𝟑

≥ 

𝟏

𝟐
. √(𝒂 + 𝐛)(𝒂 + 𝐜)(𝒂 + 𝐝)(𝐛 + 𝐜)(𝐛 + 𝐝)(𝐜 + 𝐝) 

=
𝟏

𝟐
. √((𝒂 + 𝐛)(𝐛 + 𝐜)(𝐜 + 𝐝)). ((𝒂 + 𝐜)(𝒂 + 𝐝)(𝐛 + 𝐝)) 

=

(√
(𝒂𝐛𝐜 + 𝐛𝐜𝐝 + 𝐜𝐝𝒂 + 𝐝𝒂𝐛)

+(𝐜𝟐(𝒂 + 𝐛) + 𝐛𝟐(𝐜 + 𝐝))
) .(√

(𝒂𝐛𝐜 + 𝐛𝐜𝐝 + 𝐜𝐝𝒂 + 𝐝𝒂𝐛)

+(𝒂𝟐(𝐛 + 𝐝) + 𝐝𝟐(𝒂 + 𝐜))
)

𝟐
 

≥
𝐑𝐞𝐯𝐞𝐫𝐬𝐞 𝐂𝐁𝐒 𝒂𝐛𝐜 + 𝐛𝐜𝐝 + 𝐜𝐝𝒂 + 𝐝𝒂𝐛 +√(𝐜

𝟐(𝒂 + 𝐛) + 𝐛𝟐(𝐜 + 𝐝)). (𝒂𝟐(𝐛 + 𝐝) + 𝐝𝟐(𝒂 + 𝐜))

𝟐
 

≥
?
𝒂𝐛𝐜 + 𝐛𝐜𝐝 + 𝐜𝐝𝒂 + 𝐝𝒂𝐛 

⇔ √(𝐜𝟐(𝒂 + 𝐛) + 𝐛𝟐(𝐜 + 𝐝)). (𝒂𝟐(𝐛 + 𝐝) + 𝐝𝟐(𝒂 + 𝐜)) ≥
?
⏟
(∗)

𝒂𝐛𝐜 + 𝐛𝐜𝐝 + 𝐜𝐝𝒂 + 𝐝𝒂𝐛 

𝐂𝒂𝐬𝐞 𝟏  𝒂𝐜 + 𝐛𝐝 ≥ 𝒂𝐛 + 𝐜𝐝 𝒂𝐧𝐝 𝐭𝐡𝐞𝐧 ∶ 𝐋𝐇𝐒 𝐨𝐟 (∗) ≥
𝐑𝐞𝐯𝐞𝐫𝐬𝐞 𝐂𝐁𝐒

 

𝐜𝒂.√(𝒂 + 𝐛)(𝐛 + 𝐝) + 𝐛𝐝. √(𝐜 + 𝐝)(𝒂 + 𝐜) 

= 𝐜𝒂.√(𝐛 + 𝒂)(𝐛 + 𝐝) + 𝐛𝐝. √(𝐜 + 𝐝)(𝐜 + 𝒂) ≥
𝐑𝐞𝐯𝐞𝐫𝐬𝐞 𝐂𝐁𝐒

 

𝐜𝒂. (𝐛 + √𝒂𝐝) + 𝐛𝐝. (𝐜 + √𝒂𝐝) ≥
?
𝒂𝐛𝐜 + 𝐛𝐜𝐝 + 𝐜𝐝𝒂 + 𝐝𝒂𝐛 

⇔ √𝒂𝐝. (𝐜𝒂 + 𝐛𝐝) ≥
?
𝒂𝐝(𝐛 + 𝐜) ⇔ 𝐜𝒂 + 𝐛𝐝 ≥

?
⏟
①

√𝒂𝐝. (𝐛 + 𝐜) 𝒂𝐧𝐝 ∵ √𝒂𝐝 ≤
𝐀𝐌−𝐆𝐌 𝒂 + 𝐝

𝟐
 

∴ 𝐢𝐧 𝐨𝐫𝐝𝐞𝐫 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ①, 𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 𝟐(𝒂𝐜 + 𝐛𝐝 ) ≥
?
(𝒂 + 𝐝)(𝐛 + 𝐜) 

= 𝒂𝐛 + 𝒂𝐜 + 𝐛𝐝 + 𝐜𝐝 ⇔ 𝒂𝐜 + 𝐛𝐝 ≥
?
𝒂𝐛 + 𝐜𝐝 → 𝐭𝐫𝐮𝐞 ⇒① ⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 
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𝐂𝒂𝐬𝐞 𝟐  𝒂𝐛 + 𝐜𝐝 ≥ 𝒂𝐜 + 𝐛𝐝 𝒂𝐧𝐝 𝐭𝐡𝐞𝐧 ∶ 𝐋𝐇𝐒 𝐨𝐟 (∗) ≥
𝐑𝐞𝐯𝐞𝐫𝐬𝐞 𝐂𝐁𝐒

 

𝐜𝐝.√(𝒂 + 𝐛)(𝒂 + 𝐜) + 𝒂𝐛.√(𝐛 + 𝐝)(𝐜 + 𝐝) 

= 𝐜𝐝. √(𝒂 + 𝐛)(𝒂 + 𝐜) + 𝒂𝐛. √(𝐝 + 𝐛)(𝐝 + 𝐜) ≥
𝐑𝐞𝐯𝐞𝐫𝐬𝐞 𝐂𝐁𝐒

 

𝐜𝐝. (𝒂 + √𝐛𝐜) + 𝒂𝐛. (𝐝 + √𝐛𝐜) ≥
?
𝒂𝐛𝐜 + 𝐛𝐜𝐝 + 𝐜𝐝𝒂 + 𝐝𝒂𝐛 

⇔ √𝐛𝐜. (𝒂𝐛 + 𝐜𝐝) ≥
?
𝐛𝐜(𝒂 + 𝐝) ⇔ 𝒂𝐛 + 𝐜𝐝 ≥

?
⏟
②

√𝐛𝐜. (𝒂 + 𝐝) 𝒂𝐧𝐝 ∵ √𝐛𝐜 ≤
𝐀𝐌−𝐆𝐌 𝐛 + 𝐜

𝟐
 

∴ 𝐢𝐧 𝐨𝐫𝐝𝐞𝐫 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ②, 𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 𝟐(𝒂𝐛 + 𝐜𝐝 ) ≥
?
(𝐛 + 𝐜)(𝒂 + 𝐝) 

= 𝒂𝐛 + 𝒂𝐜 + 𝐛𝐝 + 𝐜𝐝 ⇔ 𝒂𝐛 + 𝐜𝐝 ≥
?
𝒂𝐜 + 𝐛𝐝 → 𝐭𝐫𝐮𝐞 ⇒② ⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 

∴ 𝐜𝐨𝐦𝐛𝐢𝐧𝐢𝐧𝐠 𝐛𝐨𝐭𝐡 𝐜𝒂𝐬𝐞𝐬, (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 ∀ 𝒂, 𝐛, 𝐜, 𝐝 > 0 𝑎𝐧𝐝 𝐬𝐨, 
𝒂𝐛𝐜 + 𝐛𝐜𝐝 + 𝐜𝐝𝒂 + 𝐝𝒂𝐛

𝒂 + 𝐛 + 𝐜 + 𝐝
≤
𝟏

𝟒
. √(𝒂 + 𝐛)(𝒂 + 𝐜)(𝒂 + 𝐝)(𝐛 + 𝐜)(𝐛 + 𝐝)(𝐜 + 𝐝)
𝟑

 

∀ 𝒂, 𝐛, 𝐜, 𝐝 > 0 𝑎𝐧𝐝 𝐢𝐭′𝐬 𝐬𝐡𝐨𝐰𝐧 𝐢𝐧 𝐭𝐡𝐞 𝐛𝐞𝐠𝐢𝐧𝐧𝐢𝐧𝐠 𝐭𝐡𝒂𝐭 ∶ 
𝟏

𝟐
. √(𝒂 + 𝐛)(𝒂 + 𝐜)(𝒂 + 𝐝)(𝐛 + 𝐜)(𝐛 + 𝐝)(𝐜 + 𝐝)
𝟔

≤
𝒂 + 𝐛 + 𝐜 + 𝐝

𝟒
 

⇒
𝟏

𝟒
. √(𝒂 + 𝐛)(𝒂 + 𝐜)(𝒂 + 𝐝)(𝐛 + 𝐜)(𝐛 + 𝐝)(𝐜 + 𝐝)
𝟑

≤
(𝒂 + 𝐛 + 𝐜 + 𝐝)𝟐

𝟏𝟔
 

∀ 𝒂, 𝐛, 𝐜, 𝐝 > 0 𝑎𝐧𝐝 𝐭𝐡𝐞 𝐩𝐫𝐨𝐨𝐟 𝐢𝐬 𝐜𝐨𝐦𝐩𝒍𝐞𝐭𝐞, ′′ =′′ 𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 = 𝐝 (𝐐𝐄𝐃) 
 

2083. 𝐈𝐟 𝒙, 𝐲, 𝐳 > 0, 𝑥 + 𝐲 + 𝐳 = 𝟑 𝒂𝐧𝐝 𝛌 ≥
𝟏

𝟐
 𝐭𝐡𝐞𝐧 ∶ 

𝛌∑𝒙𝟑

𝐜𝐲𝐜

≥∑𝒙𝟐

𝐜𝐲𝐜

+∑𝒙

𝐜𝐲𝐜

+ 𝟑(𝛌 − 𝟐) 

  Proposed by Marin Chirciu-Romania 

Solution by Soumava Chakraborty-Kolkata-India 

𝛌∑𝒙𝟑

𝐜𝐲𝐜

≥
?
∑𝒙𝟐

𝐜𝐲𝐜

+∑𝒙

𝐜𝐲𝐜

+ 𝟑(𝛌 − 𝟐) ⇔
𝒙+𝐲+𝐳 = 𝟑

 

𝛌 (∑𝒙𝟑

𝐜𝐲𝐜

−
𝟏

𝟗
(∑𝒙

𝐜𝐲𝐜

)

𝟑

) ≥
? 𝟏

𝟑
(∑𝒙

𝐜𝐲𝐜

)(∑𝒙𝟐

𝐜𝐲𝐜

) +
𝟏

𝟗
(∑𝒙

𝐜𝐲𝐜

)

𝟑

−
𝟔

𝟐𝟕
(∑𝒙

𝐜𝐲𝐜

)

𝟑

 

⇔ 𝛌(𝟗∑𝒙𝟑

𝐜𝐲𝐜

− (∑𝒙

𝐜𝐲𝐜

)

𝟑

) ≥
?
𝟑(∑𝒙

𝐜𝐲𝐜

)(∑𝒙𝟐

𝐜𝐲𝐜

) − (∑𝒙

𝐜𝐲𝐜

)

𝟑

 𝒂𝐧𝐝 
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∵ 𝛌 ≥
𝟏

𝟐
 ∧  𝟗∑𝒙𝟑

𝐜𝐲𝐜

− (∑𝒙

𝐜𝐲𝐜

)

𝟑

≥
𝐇𝐨𝒍𝐝𝐞𝐫

𝟎 ∴ 𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 

𝟏

𝟐
(𝟗∑𝒙𝟑

𝐜𝐲𝐜

− (∑𝒙

𝐜𝐲𝐜

)

𝟑

) ≥
?
𝟑(∑𝒙

𝐜𝐲𝐜

)(∑𝒙𝟐

𝐜𝐲𝐜

) − (∑𝒙

𝐜𝐲𝐜

)

𝟑

 

⇔ 𝟗∑𝒙𝟑

𝐜𝐲𝐜

+ (∑𝒙

𝐜𝐲𝐜

)

𝟑

≥
?
𝟔(∑𝒙

𝐜𝐲𝐜

)(∑𝒙𝟐

𝐜𝐲𝐜

) 

⇔ 𝟒∑𝒙𝟑

𝐜𝐲𝐜

+ 𝟔𝒙𝐲𝐳 ≥
?
⏟
(∗)

𝟑∑𝒙𝟐𝐲

𝐜𝐲𝐜

+ 𝟑∑𝒙𝐲𝟐

𝐜𝐲𝐜

 

𝐍𝐨𝐰, 𝟑∑𝒙𝟑

𝐜𝐲𝐜

+ 𝟗𝒙𝐲𝐳 ≥
𝐒𝐜𝐡𝐮𝐫
⏟
①

𝟑∑𝒙𝟐𝐲

𝐜𝐲𝐜

+ 𝟑∑𝒙𝐲𝟐

𝐜𝐲𝐜

 𝒂𝐧𝐝 ∑𝒙𝟑

𝐜𝐲𝐜

≥
𝐀𝐌−𝐆𝐌
⏟  
②

𝟑𝒙𝐲𝐳 𝒂𝐧𝐝 

①+  ② ⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 ∴ 𝛌∑𝒙𝟑

𝐜𝐲𝐜

≥∑𝒙𝟐

𝐜𝐲𝐜

+∑𝒙

𝐜𝐲𝐜

+ 𝟑(𝛌 − 𝟐) 

∀ 𝒙, 𝐲, 𝐳 > 0│𝑥 + 𝐲 + 𝐳 = 𝟑 𝒂𝐧𝐝 𝛌 ≥
𝟏

𝟐
, ′′ =′′  𝐢𝐟𝐟 𝒙 = 𝐲 = 𝐳 = 𝟏 (𝐐𝐄𝐃) 

 

2084. 𝐈𝐟 𝒙, 𝐲, 𝐳 > 0, 𝑥 + 𝐲 + 𝐳 = 𝟑 𝒂𝐧𝐝 𝛌 ≥ 𝟑 𝐭𝐡𝐞𝐧 ∶ 

∑
𝛌− 𝒙𝟑

𝒙
𝐜𝐲𝐜

≥ 𝟑(𝛌 − 𝟏) 

  Proposed by Marin Chirciu-Romania 

Solution by Soumava Chakraborty-Kolkata-India 

∑
𝛌−𝒙𝟑

𝒙
𝐜𝐲𝐜

≥
?
𝟑(𝛌 − 𝟏) ⇔ 𝛌(∑

𝟏

𝒙
𝐜𝐲𝐜

− 𝟑) ≥
?
∑𝒙𝟐

𝐜𝐲𝐜

− 𝟑 

⇔
𝒙+𝐲+𝐳 = 𝟑

𝛌(
𝟏

𝟑
(∑𝒙

𝐜𝐲𝐜

)(∑𝒙𝐲

𝐜𝐲𝐜

) − 𝟑𝒙𝐲𝐳) ≥
?
𝒙𝐲𝐳(

𝟗∑ 𝒙𝟐𝐜𝐲𝐜

(∑ 𝒙𝐜𝐲𝐜 )
𝟐 − 𝟑) 

⇔
𝛌

𝟑
.(∑𝒙

𝐜𝐲𝐜

)

𝟐

. ((∑𝒙

𝐜𝐲𝐜

)(∑𝒙𝐲

𝐜𝐲𝐜

) − 𝟗𝒙𝐲𝐳) ≥
?
𝟑𝒙𝐲𝐳(𝟑∑𝒙𝟐

𝐜𝐲𝐜

−(∑𝒙

𝐜𝐲𝐜

)

𝟐

)  𝒂𝐧𝐝 

∵
𝛌

𝟑
≥ 𝟏 ∧  (∑𝒙

𝐜𝐲𝐜

)(∑𝒙𝐲

𝐜𝐲𝐜

) − 𝟗𝒙𝐲𝐳 ≥
𝐀𝐌−𝐆𝐌

𝟎 ∴ 𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 



 
www.ssmrmh.ro 

71 RMM-CYCLIC INEQUALITIES MARATHON 2001-2100 

 

(∑𝒙

𝐜𝐲𝐜

)

𝟐

. ((∑𝒙

𝐜𝐲𝐜

)(∑𝒙𝐲

𝐜𝐲𝐜

) − 𝟗𝒙𝐲𝐳) ≥
?
⏟
(∗)

𝟑𝒙𝐲𝐳(𝟑∑𝒙𝟐

𝐜𝐲𝐜

− (∑𝒙

𝐜𝐲𝐜

)

𝟐

) 

𝐀𝐬𝐬𝐢𝐠𝐧𝐢𝐧𝐠 𝐲 + 𝐳 = 𝒂, 𝐳 + 𝒙 = 𝐛, 𝒙 + 𝐲 = 𝐜 ⇒ 𝒂 + 𝐛 − 𝐜 = 𝟐𝐳 > 0, 𝑏 + 𝑐 − 𝑎 = 𝟐𝒙 
> 𝟎 𝒂𝐧𝐝 𝐜 + 𝒂 − 𝐛 = 𝟐𝐲 > 0 ⇒ 𝑎 + 𝐛 > 𝑐, 𝐛 + 𝐜 > 𝒂, 𝐜 + 𝒂 > 𝒃 ⇒ 𝒂, 𝐛, 𝐜 𝐟𝐨𝐫𝐦   

𝐬𝐢𝐝𝐞𝐬 𝐨𝐟 𝒂 𝐭𝐫𝐢𝒂𝐧𝐠𝐥𝐞 𝐰𝐢𝐭𝐡 𝐬𝐞𝐦𝐢𝐩𝐞𝐫𝐢𝐦𝐞𝐭𝐞𝐫, 𝐜𝐢𝐫𝐜𝐮𝐦𝐫𝒂𝐝𝐢𝐮𝐬 𝒂𝐧𝐝 𝐢𝐧𝐫𝒂𝐝𝐢𝐮𝐬 = 𝐬,𝐑, 𝐫 (𝐬𝒂𝐲) 

⇒∑𝒙

𝐜𝐲𝐜

= 𝐬, 𝒙𝐲𝐳 = 𝐫𝟐𝐬,∑𝒙𝐲

𝐜𝐲𝐜

= 𝟒𝐑𝐫 + 𝐫𝟐 𝒂𝐧𝐝 ∑𝒙𝟐

𝐜𝐲𝐜

= 𝐬𝟐 − 𝟖𝐑𝐫 − 𝟐𝐫𝟐 ⇒ (∗) ⇔ 

𝐬𝟐(𝐬(𝟒𝐑𝐫+ 𝐫𝟐) − 𝟗𝐫𝟐𝐬) ≥
?
𝟑𝐫𝟐𝐬(𝟑(𝐬𝟐 − 𝟖𝐑𝐫 − 𝟐𝐫𝟐) − 𝐬𝟐) 

⇔ (𝟐𝐑 − 𝟕𝐫)𝐬𝟐 + 𝟗𝐫𝟐(𝟒𝐑 + 𝐫) ≥
?
⏟
(∗∗)

𝟎 𝒂𝐧𝐝 𝐢𝐭′𝐬 𝐭𝐫𝐢𝐯𝐢𝒂𝒍𝒍𝐲 𝐭𝐫𝐮𝐞 𝐰𝐡𝐞𝐧 ∶ 𝟐𝐑 − 𝟕𝐫 ≥ 𝟎 

𝒂𝐧𝐝 𝐰𝐡𝐞𝐧 ∶ 𝟐𝐑 − 𝟕𝐫 < 0, 𝑡ℎ𝑒𝑛 ∶ 𝐿𝐻𝑆 𝑜𝑓 (∗∗) ≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

 
(𝟐𝐑 − 𝟕𝐫)(𝟒𝐑𝟐 + 𝟒𝐑𝐫 + 𝟑𝐫𝟐) + 𝟗𝐫𝟐(𝟒𝐑 + 𝐫) = 𝟐(𝐑 − 𝟐𝐫)(𝟒𝐑𝟐 − 𝟐𝐑𝐫 + 𝟑𝐫𝟐) ≥ 𝟎 

∵ 𝐑 ≥
𝐄𝐮𝒍𝐞𝐫

𝟐𝐫 ⇒ (∗∗) ⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 ∴∑
𝛌− 𝒙𝟑

𝒙
𝐜𝐲𝐜

≥ 𝟑(𝛌 − 𝟏) 

∀ 𝒙, 𝐲, 𝐳 > 0│𝑥 + 𝐲 + 𝐳 = 𝟑 ∧  𝛌 ≥ 𝟑, ′′ =′′  𝐢𝐟𝐟 𝒙 = 𝐲 = 𝐳 = 𝟏 (𝐐𝐄𝐃) 
 

2085. 𝐈𝐟 𝒂, 𝐛, 𝐜 >
𝟏

𝛌+𝟏
, 𝒂 + 𝐛 + 𝐜 ≤ 𝟑 𝒂𝐧𝐝 𝛌 ≥ 𝟎 𝐭𝐡𝐞𝐧 ∶ 

∑
𝟏

𝐥𝐨𝐠𝟐(𝛌𝒂 + 𝐛)
𝐜𝐲𝐜

≥
𝟑

𝐥𝐨𝐠𝟐(𝛌 + 𝟏)
 

  Proposed by Marin Chirciu-Romania 

Solution by Soumava Chakraborty-Kolkata-India 

𝛌𝒂 + 𝐛 >
𝛌

𝛌 + 𝟏
+

𝟏

𝛌 + 𝟏
= 𝟏 ∴ 𝐥𝐧(𝛌𝒂 + 𝐛) > 0 𝑎𝐧𝐝 𝒂𝐧𝒂𝒍𝐨𝐠𝐬 

∴∑
𝟏

𝐥𝐨𝐠𝟐(𝛌𝒂 + 𝐛)
𝐜𝐲𝐜

= (𝐥𝐧𝟐).∑
𝟏

𝐥𝐧(𝛌𝒂 + 𝐛)
𝐜𝐲𝐜

≥
𝐁𝐞𝐫𝐠𝐬𝐭𝐫𝐨𝐦 𝟗(𝐥𝐧𝟐)

∑ 𝐥𝐧(𝛌𝒂 + 𝐛)𝐜𝐲𝐜
≥
? 𝟑

𝐥𝐨𝐠𝟐(𝛌 + 𝟏)
 

=
𝟑(𝐥𝐧𝟐)

𝐥𝐧(𝛌 + 𝟏)
⇔ 𝟑 𝐥𝐧(𝛌 + 𝟏) ≥

?
∑𝐥𝐧(𝛌𝒂 + 𝐛)

𝐜𝐲𝐜

 (∵ 𝐥𝐧 𝟐 > 0) ⇔∑𝐥𝐧 (
𝛌𝒂 + 𝐛

𝛌 + 𝟏
)

𝐜𝐲𝐜

≤
?
⏟
(∗)

𝟎 

(∵
𝛌𝒂 + 𝐛

𝛌 + 𝟏
> 0 𝑎𝐬 𝛌𝒂 + 𝐛 ≥ 𝟏 > 0 𝑎𝐧𝐝 𝛌 ≥ 𝟎 ⇒ 𝛌 + 𝟏 ≥ 𝟏 > 0) 

𝐍𝐨𝐰, 𝐥𝐧 (
𝛌𝒂 + 𝐛

𝛌 + 𝟏
) ≤

𝛌𝒂 + 𝐛

𝛌 + 𝟏
− 𝟏 𝒂𝐧𝐝 𝒂𝐧𝒂𝒍𝐨𝐠𝐬 ∴ ∑𝐥𝐧(

𝛌𝒂 + 𝐛

𝛌 + 𝟏
)

𝐜𝐲𝐜

≤ 
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𝛌

𝛌 + 𝟏
.∑𝒂

𝐜𝐲𝐜

+
𝟏

𝛌 + 𝟏
.∑𝒂

𝐜𝐲𝐜

− 𝟑 =∑𝒂

𝐜𝐲𝐜

− 𝟑 ≤
𝒂+𝐛+𝐜 ≤ 𝟑

𝟑 − 𝟑 = 𝟎 ⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 

∴ ∑
𝟏

𝐥𝐨𝐠𝟐(𝛌𝒂 + 𝐛)
𝐜𝐲𝐜

≥
𝟑

𝐥𝐨𝐠𝟐(𝛌 + 𝟏)
 ∀ 𝒂, 𝐛, 𝐜 >

𝟏

𝛌 + 𝟏
│𝒂+ 𝐛 + 𝐜 ≤ 𝟑 𝒂𝐧𝐝 𝛌 ≥ 𝟎, 

′′ =′′  𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 = 𝟏 (𝐐𝐄𝐃) 

2086. 𝐈𝐟 𝒂, 𝐛, 𝐜 > 0, 𝒂 + 𝐛 + 𝐜 = 𝟑 𝒂𝐧𝐝 𝛌 ≥ 𝟏 𝐭𝐡𝐞𝐧 ∶ 

∑
𝒂𝟐 − 𝒂 + 𝛌

𝐛 + 𝟏
𝐜𝐲𝐜

≥
𝟑𝛌

𝟐
 

  Proposed by Marin Chirciu-Romania 

Solution by Soumava Chakraborty-Kolkata-India 

∑((𝒂𝟐 − 𝒂)(𝒂 + 𝟏)(𝐜 + 𝟏))

𝐜𝐲𝐜

≥
?
𝟎 ⇔∑𝒂𝐛𝟑

𝐜𝐲𝐜

+∑𝒂𝟑

𝐜𝐲𝐜

−∑𝒂𝐛

𝐜𝐲𝐜

−∑𝒂

𝐜𝐲𝐜

≥
?
⏟
(∗)

𝟎  

𝒂𝐧𝐝 𝐬𝐢𝐧𝐜𝐞∑𝒂𝐛𝟑

𝐜𝐲𝐜

= 𝒂𝐛𝐜∑
𝐛𝟐

𝐜
𝐜𝐲𝐜

≥
𝐁𝐞𝐫𝐠𝐬𝐭𝐫𝐨𝐦 𝒂𝐛𝐜(∑ 𝒂𝐜𝐲𝐜 )

𝟐

∑ 𝒂𝐜𝐲𝐜
= 𝒂𝐛𝐜∑𝒂

𝐜𝐲𝐜

∴ 𝐢𝐧 𝐨𝐫𝐝𝐞𝐫 𝐭𝐨  

𝐩𝐫𝐨𝐯𝐞 (∗), 𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 𝒂𝐛𝐜∑𝒂

𝐜𝐲𝐜

+∑𝒂𝟑

𝐜𝐲𝐜

−∑𝒂𝐛

𝐜𝐲𝐜

−∑𝒂

𝐜𝐲𝐜

≥
?
𝟎 

⇔ 𝒂𝐛𝐜∑𝒂

𝐜𝐲𝐜

+
𝟏

𝟑
(∑𝒂

𝐜𝐲𝐜

)(∑𝒂𝟑

𝐜𝐲𝐜

) −
𝟏

𝟗
(∑𝒂𝐛

𝐜𝐲𝐜

)(∑𝒂

𝐜𝐲𝐜

)

𝟐

−
𝟏

𝟐𝟕
(∑𝒂

𝐜𝐲𝐜

)

𝟒

≥
?
𝟎  

(∵ ∑𝒂

𝐜𝐲𝐜

= 𝟑) ⇔ 𝟒∑𝒂𝟒

𝐜𝐲𝐜

+∑𝒂𝟑𝐛

𝐜𝐲𝐜

+∑𝒂𝐛𝟑

𝐜𝐲𝐜

≥
?
𝟔∑𝒂𝟐𝐛𝟐

𝐜𝐲𝐜

→ 𝐭𝐫𝐮𝐞 

∵ 𝟒∑𝒂𝟒

𝐜𝐲𝐜

≥ 𝟒∑𝒂𝟐𝐛𝟐

𝐜𝐲𝐜

 𝒂𝐧𝐝 ∑𝒂𝟑𝐛

𝐜𝐲𝐜

+∑𝒂𝐛𝟑

𝐜𝐲𝐜

≥
𝐀𝐌−𝐆𝐌

𝟐∑𝒂𝟐𝐛𝟐

𝐜𝐲𝐜

⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 

∴ ∑((𝒂𝟐 − 𝒂)(𝒂 + 𝟏)(𝐜 + 𝟏))

𝐜𝐲𝐜

≥ 𝟎 ⇒∑
𝒂𝟐 − 𝒂

𝐛 + 𝟏
𝐜𝐲𝐜

≥ 𝟎 ⇒∑
𝒂𝟐 − 𝒂 + 𝛌

𝐛 + 𝟏
𝐜𝐲𝐜

≥ 

𝛌.∑
𝟏

𝐛 + 𝟏
𝐜𝐲𝐜

≥
𝐁𝐞𝐫𝐠𝐬𝐭𝐫𝐨𝐦 𝟗𝛌

∑ 𝒂𝐜𝐲𝐜 + 𝟑
 (∵ 𝛌 ≥ 𝟏 > 0) =

𝒂+𝐛+𝐜 = 𝟑 𝟗𝛌

𝟑 + 𝟑
 𝒂𝐧𝐝 𝐬𝐨, 

∑
𝒂𝟐 − 𝒂 + 𝛌

𝐛 + 𝟏
𝐜𝐲𝐜

≥
𝟑𝛌

𝟐
 ∀ 𝒂, 𝐛, 𝐜 > 0│𝒂+ 𝐛 + 𝐜 = 𝟑 𝒂𝐧𝐝 𝛌 ≥ 𝟏, 

′′ =′′  𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 = 𝟏 (𝐐𝐄𝐃) 
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2087. If 𝟒𝒙𝟑𝒚𝟑𝒛𝟑 ≥ 𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 + 𝟏 then: 
 

𝒙𝟐𝒚𝟐𝒛𝟐 ≥ 𝟑 
 

Proposed by Nguyen Hung Cuong-Vietnam 
Solution by Amin Hajiyev-Azerbaijan 
 

𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 + 𝟏

𝟒
≥⏞

𝑨𝑴−𝑮𝑴

√𝒙𝟐𝒚𝟐𝒛𝟐
𝟒

 

𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 + 𝟏 ≥ 𝟒√𝒙𝒚𝒛 

𝟒𝒙𝟑𝒚𝟑𝒛𝟑 ≥ 𝟒√𝒙𝒚𝒛 →  𝒙⁵𝒚𝟓𝒛𝟓 ≥ 𝟏 

𝒙𝒚𝒛 ≥ 𝟏 

𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐

𝟑
≥⏞

𝑨𝑴−𝑮𝑴

√𝒙𝟐𝒚𝟐𝒛𝟐
𝟑

→ 𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 ≥ 𝟑 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇 𝒂𝒏𝒅 𝒐𝒏𝒍𝒚 𝒊𝒇  
𝒙 = 𝒚 = 𝒛 = 𝟏. 

2088. 𝑰𝒇  𝒂, 𝒃, 𝒄 > 0  𝑡ℎ𝑒𝑛: 

𝒂

√𝒃 + 𝒄
+

𝒃

√𝒂 + 𝒄
+

𝒄

√𝒂 + 𝒃
> √

𝒂 + 𝒃 + 𝒄

𝟐
 

Proposed by Gheorghe Crăciun-Romania 
Solution by Amin Hajiyev-Azerbaijan 
 
 𝑳𝒆𝒎𝒎𝒂 𝟏.    𝑯𝒐𝒍𝒅𝒆𝒓′𝒔 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚.           

(∑
𝒙𝒊

√𝒚𝒊

𝒏

𝒊=𝟏

)

𝟐

(∑𝒙𝒊𝒚𝒊

𝒏

𝒊=𝟏

) ≥ (∑𝒙𝒊

𝒏

𝒊=𝟏

)

𝟑

, 𝒙𝒊, 𝒚𝒊 > 0 

𝑳𝒆𝒎𝒎𝒂 𝟐.  𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 ≥ 𝒂𝒃 + 𝒂𝒄 + 𝒃𝒄   

𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 − (𝒂𝒃 + 𝒂𝒄 + 𝒃𝒄) =
𝟏

𝟐
(∑(𝒂 − 𝒃)𝟐

𝒄𝒚𝒄

) ≥ 𝟎 

(𝒂 + 𝒃 + 𝒄)𝟐 = 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐⏟        
≥𝒂𝒃+𝒂𝒄+𝒃𝒄

+ 𝟐(𝒂𝒃 + 𝒂𝒄 + 𝒃𝒄) 

(𝒂 + 𝒃 + 𝒄)𝟐 ≥ 𝟑(𝒂𝒃 + 𝒂𝒄 + 𝒃𝒄) 

{
𝒙𝟏 = 𝒂, 𝒙𝟐 = 𝒃, 𝒙𝟑 = 𝒄

𝒚𝟏 = 𝒄 + 𝒃, 𝒚𝟐 = 𝒂 + 𝒄, 𝒚𝟑 = 𝒃 + 𝒂
 

(∑
𝒂

√𝒃 + 𝒄
𝒄𝒚𝒄

)

𝟐

(∑𝒂(𝒃 + 𝒄)

𝒄𝒚𝒄

) ≥ (𝒂 + 𝒃 + 𝒄)𝟑 
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𝑳𝑯𝑺𝟐 ≥
(𝒂 + 𝒃 + 𝒄)𝟑

∑ 𝒂(𝒃 + 𝒄)𝒄𝒚𝒄
=

(𝒂 + 𝒃 + 𝒄)𝟑

𝟐(𝒂𝒃 + 𝒂𝒄 + 𝒃𝒄)
 

𝒂𝒃 + 𝒂𝒄 + 𝒃𝒄 ≤⏟
𝑳𝒆𝒎𝒎𝒂 𝟐

(𝒂 + 𝒃 + 𝒄)𝟐

𝟑
 

𝑳𝑯𝑺𝟐 ≥
(𝒂 + 𝒃 + 𝒄)𝟑

𝟐
𝟑
(𝒂 + 𝒃 + 𝒄)𝟐

→ 𝑳𝑯𝑺𝟐 ≥
𝟑

𝟐
(𝒂 + 𝒃 + 𝒄) →  𝑳𝑯𝑺 ≥ √

𝟑(𝒂 + 𝒃 + 𝒄)

𝟐
 

√
𝟑(𝒂 + 𝒃 + 𝒄)

𝟐
> √

𝒂 + 𝒃 + 𝒄

𝟐
  

𝑳𝑯𝑺 =
𝒂

√𝒃 + 𝒄
+

𝒃

√𝒂 + 𝒄
+

𝒄

√𝒂 + 𝒃
> √

𝒂 + 𝒃 + 𝒄

𝟐
    

2089. If 𝒂, 𝒃, 𝒄, 𝒅 > 0 then: 

∑
𝟏

𝒂𝟑 + 𝒃𝟑
𝒄𝒚𝒄

≥
𝟏𝟗𝟐

(𝒂 + 𝒃 + 𝒄 + 𝒅)𝟑
 

Proposed by Mais Hasanov-Azerbaijan 
Solution by Amin Hajiyev-Azerbaijan 

∑
𝒂𝒊
𝟐

𝒙𝒊

𝒏

𝒊=𝟏

≥⏞
𝑩𝑬𝑹𝑮𝑺𝑻𝑹𝑶𝑴 (∑ 𝒂𝒊

𝒏
𝒊=𝟏 )𝟐

∑ 𝒙𝒊
𝒏
𝒊=𝟏

  𝒂𝒊 = 𝟏 →   ∑
𝟏

𝒙𝒊

𝒏

𝒊=𝟏

≥
𝒏𝟐

∑ 𝒙𝒊
𝒏
𝒊=𝟏

 

𝒏 = 𝟔 →  ∑
𝟏

𝒙𝒊

𝟔

𝒊=𝟏

≥
𝟑𝟔

∑ 𝒙𝒊
𝟔
𝒊=𝟏

   ∑
𝟏

𝒂𝟑 + 𝒃𝟑
𝒄𝒚𝒄

≥
𝟑𝟔

∑ (𝒂𝟑 + 𝒃𝟑)𝒄𝒚𝒄
  

  ∑
𝟏

𝒂𝟑 + 𝒃𝟑
𝒄𝒚𝒄

≥
𝟑𝟔

𝟑(𝒂𝟑 + 𝒃𝟑 + 𝒄𝟑 + 𝒅𝟑)
=

𝟏𝟐

𝒂𝟑 + 𝒃𝟑 + 𝒄𝟑 + 𝒅𝟑
 

𝑻𝒉𝒆 𝑷𝒐𝒘𝒆𝒓 𝑴𝒆𝒂𝒏 𝑰𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 (𝑮𝒆𝒏𝒆𝒓𝒂𝒍𝒊𝒛𝒆𝒅 𝑴𝒆𝒂𝒏 𝑰𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚) 

𝑴𝒑 = (
𝟏

𝒏
∑𝒂𝒊

𝒑

𝒏

𝒊=𝟏

)

𝟏
𝒑

,   𝒂𝟏, 𝒂𝟐…𝒂𝒏 ∈ 𝑹
+   𝒑 > 𝑞   𝑴𝒑 ≥ 𝑴𝒒 

𝑴𝟑 ≥ 𝑴𝟏 → 𝒏 = 𝟒      √
𝒂𝟑 + 𝒃𝟑 + 𝒄𝟑 + 𝒅𝟑

𝟒

𝟑

≥
𝒂 + 𝒃 + 𝒄 + 𝒅

𝟒
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𝒂𝟑 + 𝒃𝟑 + 𝒄𝟑 + 𝒅𝟑

𝟒
≥
(𝒂 + 𝒃 + 𝒄 + 𝒅)𝟑

𝟔𝟒
→∑𝒂𝟑

𝒄𝒚𝒄

≥
(𝒂 + 𝒃 + 𝒄 + 𝒅)𝟑

𝟏𝟔
 

∑
𝟏

𝒂𝟑 + 𝒃𝟑
𝒄𝒚𝒄

≥
𝟏𝟐

𝒂𝟑 + 𝒃𝟑 + 𝒄𝟑 + 𝒅𝟑
   ∑

𝟏

𝒂𝟑 + 𝒃𝟑
𝒄𝒚𝒄

≥
𝟏𝟐

(𝒂 + 𝒃 + 𝒄 + 𝒅)𝟑

𝟏𝟔

=
𝟏𝟗𝟐

(𝒂 + 𝒃 + 𝒄 + 𝒅)𝟑
 

                                              𝒂 = 𝒃 = 𝒄 = 𝒅 → 
𝟔

𝟐𝒂³
≥

𝟏𝟗𝟐

(𝟒𝒂)𝟑
   
𝟑

𝒂𝟑
≥

𝟑

𝒂𝟑
 

∑
𝟏

𝒂𝟑 + 𝒃³
𝒄𝒚𝒄

≥
𝟏𝟗𝟐

(𝒂 + 𝒃 + 𝒄 + 𝒅)𝟑
   

2090. 𝐈𝐟 𝒂, 𝐛, 𝐜 > 𝟎, 𝒂 + 𝐛 + 𝐜 = 𝟑 𝒂𝐧𝐝 𝛌 ≥ 𝟎 𝐭𝐡𝐞𝐧 ∶ 

∑
𝒂𝟐

𝐛𝐜𝟐
𝐜𝐲𝐜

+
𝛌

𝒂𝐛𝐜
≥

𝟒(𝛌 + 𝟑)𝒂𝐛𝐜

𝒂𝐛 + 𝐛𝐜 + 𝐜𝒂 + 𝒂𝐛𝐜
 

  Proposed by Marin Chirciu-Romania 

Solution by Soumava Chakraborty-Kolkata-India 

𝟑 =∑𝒂

𝐜𝐲𝐜

≥
𝐀𝐌−𝐆𝐌

𝟑. √𝒂𝐛𝐜
𝟑

⇒ 𝒂𝐛𝐜 ≤ 𝟏 𝒂𝐧𝐝 ∑𝒂𝐛

𝐜𝐲𝐜

≥
𝐀𝐌−𝐆𝐌

𝟑. √𝒂𝟐𝐛𝟐𝐜𝟐
𝟑

 

≥
𝒂𝐛𝐜 ≤ 𝟏

𝟑𝒂𝐛𝐜 ∴ ∑𝒂𝐛

𝐜𝐲𝐜

≥
①

𝟑𝒂𝐛𝐜;  𝐧𝐨𝐰,∑
𝒂𝟐

𝐛𝐜𝟐
𝐜𝐲𝐜

−
𝟏𝟐𝒂𝐛𝐜

∑ 𝒂𝐛𝐜𝐲𝐜 + 𝒂𝐛𝐜
 

=∑
(
𝒂
𝐜)

𝟐

𝐛
𝐜𝐲𝐜

−
𝟏𝟐

∑ 𝒂𝐛𝐜𝐲𝐜

𝒂𝐛𝐜 + 𝟏

≥

𝐁𝐞𝐫𝐠𝐬𝐭𝐫𝐨𝐦

𝒂𝐧𝐝
𝐯𝐢𝒂 ① (∑

𝐛
𝒂𝐜𝐲𝐜 )

𝟐

∑ 𝒂𝐜𝐲𝐜
−

𝟏𝟐

𝟑 + 𝟏
≥

𝐀𝐌−𝐆𝐌
𝒂𝐧𝐝

∵ 𝒂+𝐛+𝐜 = 𝟑 𝟗

𝟑
− 𝟑 = 𝟎 

∴∑
𝒂𝟐

𝐛𝐜𝟐
𝐜𝐲𝐜

≥
② 𝟏𝟐𝒂𝐛𝐜

∑ 𝒂𝐛𝐜𝐲𝐜 + 𝒂𝐛𝐜
; 𝒂𝒍𝐬𝐨 

𝛌

𝒂𝐛𝐜
−

𝟒𝛌𝒂𝐛𝐜

∑ 𝒂𝐛𝐜𝐲𝐜 + 𝒂𝐛𝐜
≥

𝒂𝐛𝐜 ≤ 𝟏
𝛌 −

𝟒𝛌

∑ 𝒂𝐛𝐜𝐲𝐜

𝒂𝐛𝐜 + 𝟏

≥
𝐯𝐢𝒂 ①

 

𝛌 −
𝟒𝛌

𝟑 + 𝟏
 (∵ 𝛌 ≥ 𝟎) = 𝟎 ∴

𝛌

𝒂𝐛𝐜
≥
③ 𝟒𝛌𝒂𝐛𝐜

∑ 𝒂𝐛𝐜𝐲𝐜 + 𝒂𝐛𝐜
 𝒂𝐧𝐝 𝐬𝐨,②+③ ⇒ 

∑
𝒂𝟐

𝐛𝐜𝟐
𝐜𝐲𝐜

+
𝛌

𝒂𝐛𝐜
≥

𝟒(𝛌 + 𝟑)𝒂𝐛𝐜

𝒂𝐛 + 𝐛𝐜 + 𝐜𝒂 + 𝒂𝐛𝐜
 ∀ 𝒂, 𝐛, 𝐜 > 𝟎│𝒂 + 𝐛 + 𝐜 = 𝟑 𝒂𝐧𝐝 𝛌 ≥ 𝟎, 

′′ =′′  𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 = 𝟏 (𝐐𝐄𝐃) 
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2091. If 𝒂, 𝒃, 𝒄 > 0, 𝒂𝟑 + 𝒃𝟑 + 𝒄𝟑 = 𝒂𝒃 + 𝒂𝒄 + 𝒃𝒄 then: 
 

𝒂𝟔

𝒃𝟐𝒄𝟐
+

𝒃𝟔

𝒂𝟐𝒄𝟐
+

𝒄𝟔

𝒂𝟐𝒃𝟐
≥

𝟗𝒂𝒃𝒄

𝒂 + 𝒃 + 𝒄
 

 
Proposed by Gheorghe Crăciun-Romania 

Solution by Amin Hajiyev-Azerbaijan 
 

𝒂𝟔

𝒃𝟐𝒄𝟐
+ 𝒃𝟐 + 𝒄𝟐

𝟑
≥⏞

𝑨𝑴−𝑮𝑴

√
𝒂𝟔

𝒃𝟐𝒄𝟐
∗ 𝒃𝟐 ∗ 𝒄𝟐

𝟑

= 𝒂𝟐 

𝒂𝟔

𝒃𝟐𝒄𝟐
+ 𝒃𝟐 + 𝒄𝟐 ≥ 𝟑𝒂𝟐 ⟶ ∑(

𝒂𝟔

𝒃𝟐𝒄𝟐
+ 𝒃𝟐 + 𝒄𝟐)

𝒄𝒚𝒄

≥ 𝟑∑𝒂𝟐

𝒄𝒚𝒄

 

𝒂𝟔

𝒃𝟐𝒄𝟐
+
𝒃𝟔

𝒂𝟐𝒄𝟐
+

𝒄𝟔

𝒂𝟐𝒃𝟐
+ 𝟐(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐) ≥ 𝟑(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐) 

∑
𝒂𝟔

𝒃𝟐𝒄𝟐
𝒄𝒚𝒄

≥ 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 

𝒂 + 𝒃 + 𝒄 ≥⏞
𝑨𝑴−𝑮𝑴

𝟑√𝒂𝒃𝒄
𝟑

,   𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 ≥⏞
𝑨𝑴−𝑮𝑴

𝟑√𝒂𝟐𝒃𝟐𝒄𝟐
𝟑

 

(𝒂 + 𝒃 + 𝒄)(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐) ≥ 𝟗𝒂𝒃𝒄 →   𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 ≥
𝟗𝒂𝒃𝒄

𝒂 + 𝒃 + 𝒄
 

∑
𝒂𝟔

𝒃𝟐𝒄𝟐
𝒄𝒚𝒄

≥ 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 ≥
𝟗𝒂𝒃𝒄

𝒂 + 𝒃 + 𝒄
 

𝒂𝟔

𝒃²𝒄²
+
𝒃𝟔

𝒂𝟐𝒄𝟐
+

𝒄𝟔

𝒂𝟐𝒃𝟐
≥

𝟗𝒂𝒃𝒄

𝒂 + 𝒃 + 𝒄
   

 
Equality holds for 𝒂 = 𝒃 = 𝒄 = 𝟏. 

 
2092. If 𝒂, 𝒃, 𝒄, 𝒅 > 0, 𝑎 + 𝑏 + 𝑐 + 𝑑 = 4  then: 
 

∑√
𝒂

𝟒 − 𝒂
>

𝟖𝒂𝒃𝒄𝒅

𝒂𝒃(𝒄 + 𝒅) + 𝒄𝒂(𝒂 + 𝒃)
𝒄𝒚𝒄

 

Proposed by Gheorghe Crăciun-Romania 
Solution by Mirsadix Muzefferov-Azerbaijan 
 

𝑺𝒉𝒐𝒘𝒊𝒏𝒈  𝒕𝒉𝒂𝒕  𝒘𝒉𝒆𝒏 ∶   𝟎 < 𝑎 < 4, √
𝒂

𝟒 − 𝒂
≥
𝒂

𝟐
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𝑺𝒐  𝒕𝒉𝒂𝒕 ∶   
𝒂

𝟒 − 𝒂
≥
𝒂𝟐

𝟒
 →  𝒂𝟐 − 𝟒𝒂 + 𝟒 ≥ 𝟎 →   (𝒂 − 𝟐)𝟐 ≥ 𝟎 

∑√
𝒂

𝟒 − 𝒂
≥
𝟏

𝟐
(𝒂 + 𝒃 + 𝒄 + 𝒅)

𝒄𝒚𝒄

 

𝑳𝒆𝒕  𝒖𝒔  𝒑𝒓𝒐𝒗𝒆  𝒕𝒉𝒂𝒕 ∶   
𝟏

𝟐
(𝒂 + 𝒃 + 𝒄 + 𝒅) >

𝟖𝒂𝒃𝒄𝒅

𝒂𝒃(𝒄 + 𝒅) + 𝒄𝒂(𝒂 + 𝒃)
 

𝒐𝒓:  (𝒂 + 𝒃 + 𝒄 + 𝒅)(𝒂𝒃(𝒄 + 𝒅) + 𝒄𝒂(𝒂 + 𝒃)) > 16𝒂𝒃𝒄𝒅 

𝑳𝑯𝑺 = (𝒂 + 𝒃 + 𝒄 + 𝒅)(𝒂𝒃(𝒄 + 𝒅) + 𝒄𝒂(𝒂 + 𝒃)) ≥⏞
𝑨𝑴−𝑮𝑴

 

≥ 𝟒√𝒂𝒃𝒄𝒅
𝟒

(𝟐𝒂𝒃√𝒄𝒅 + 𝟐𝒄𝒅√𝒂𝒃) ≥⏞
𝑨𝑴−𝑮𝑴

𝟒√𝒂𝒃𝒄𝒅
𝟒

. 𝟐(𝟐√(𝒂𝒃𝒄𝒅)(𝒂𝒃𝒄𝒅) = 

= 𝟏𝟔√𝒂𝒃𝒄𝒅
𝟒

 . √(𝒂𝒃𝒄𝒅) . √𝒂𝒃𝒄𝒅
𝟒

= 𝟏𝟔𝒂𝒃𝒄𝒅 
𝑨𝒄𝒄𝒐𝒓𝒅𝒊𝒏𝒈  𝒕𝒐  𝒕𝒉𝒆  𝒂, 𝒃, 𝒄, 𝒅 > 0  𝑎𝑛𝑑  𝑎 + 𝑏 + 𝑐 + 𝑑 = 4 

  𝒕𝒉𝒆  𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚  𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏  𝒊𝒔  𝒏𝒐𝒕  𝒔𝒂𝒕𝒊𝒔𝒇𝒊𝒆𝒅. 
 

2093. 𝐈𝐟 𝒂, 𝐛, 𝐜 > 0, 𝒂 + 𝐛 + 𝐜 = 𝟑 𝒂𝐧𝐝 𝛌 ≥ 𝟏, 𝐧 ≥ 𝟎 𝐭𝐡𝐞𝐧 ∶ 

∑
𝒂𝟐 − 𝒂 + 𝛌

𝐛 + 𝐧
𝐜𝐲𝐜

≥
𝟑𝛌

𝐧 + 𝟏
 

  Proposed by Marin Chirciu-Romania 

Solution by Soumava Chakraborty-Kolkata-India 

∑
𝒂𝟐 − 𝒂 + 𝛌

𝐛 + 𝐧
𝐜𝐲𝐜

=∑
𝒂𝟐 − 𝒂 + 𝟏

𝐛 + 𝐧
𝐜𝐲𝐜

+∑
𝛌 − 𝟏

𝐛 + 𝐧
𝐜𝐲𝐜

≥ 

∑

𝟏
𝟒
(𝒂 + 𝟏)𝟐

𝐛 + 𝐧
𝐜𝐲𝐜

+ (𝛌 − 𝟏).∑
𝟏

𝐛 + 𝐧
𝐜𝐲𝐜

≥
𝐁𝐞𝐫𝐠𝐬𝐭𝐫𝐨𝐦

𝟏
𝟒
(∑ 𝒂𝐜𝐲𝐜 + 𝟑)

𝟐

∑ 𝒂𝐜𝐲𝐜 + 𝟑𝐧
+ (𝛌 − 𝟏).

𝟗

∑ 𝒂𝐜𝐲𝐜 + 𝟑𝐧
  

(∵ 𝒂, 𝐛, 𝐜 > 0 ∧ 𝐧 ≥ 𝟎 ⇒ 𝐛 + 𝐧, 𝐜 + 𝐧, 𝒂 + 𝐧 > 0 𝑎𝐧𝐝 ∵ 𝛌 − 𝟏 ≥ 𝟎) 

=
𝟗

𝟑 + 𝟑𝐧
+
𝟗(𝛌 − 𝟏)

𝟑 + 𝟑𝐧
=

𝟑𝛌

𝐧 + 𝟏
∴∑

𝒂𝟐 − 𝒂 + 𝛌

𝐛 + 𝐧
𝐜𝐲𝐜

≥
𝟑𝛌

𝐧 + 𝟏
 

∀ 𝒂, 𝐛, 𝐜 > 0│𝒂 + 𝐛 + 𝐜 = 𝟑 𝒂𝐧𝐝 𝛌 ≥ 𝟏, 𝐧 ≥ 𝟎, ′′ =′′  𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 = 𝟏 (𝐐𝐄𝐃) 
 

2094. 𝐈𝐟 𝒂, 𝐛 > 0, 𝒂 + 𝐛 = 𝟐 𝒂𝐧𝐝 𝛌 ≥ 𝟐 𝐭𝐡𝐞𝐧 ∶ 

𝟏

𝟏 − 𝒂 + 𝛌𝒂𝟐
+

𝟏

𝟏 − 𝐛 + 𝛌𝐛𝟐
≥
𝟐√𝒂𝐛

𝛌
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  Proposed by Marin Chirciu-Romania 

Solution by Soumava Chakraborty-Kolkata-India 

𝟏

𝟏 − 𝒂 + 𝛌𝒂𝟐
+

𝟏

𝟏 − 𝐛 + 𝛌𝐛𝟐
−
𝟐√𝒂𝐛

𝛌
≥

𝐀𝐌−𝐆𝐌
 

𝛌((𝒂 + 𝐛)𝟐 − 𝟐𝒂𝐛) + 𝟐 − (𝒂 + 𝐛)

𝟏 − 𝐛 + 𝛌𝐛𝟐 − 𝒂 + 𝒂𝐛 − 𝛌𝒂𝐛𝟐 + 𝛌𝒂𝟐 − 𝛌𝒂𝟐𝐛 + 𝛌𝟐𝒂𝟐𝐛𝟐
−
𝒂 + 𝐛

𝛌
 

=
𝛌(𝟒 − 𝟐𝒂𝐛)

−𝟏 + 𝛌(𝟒 − 𝟐𝒂𝐛) + 𝒂𝐛 − 𝟐𝛌𝒂𝐛 + 𝛌𝟐𝒂𝟐𝐛𝟐
−
𝟐

𝛌
 (∵ 𝒂 + 𝐛 = 𝟐) 

=
𝛌𝟐(𝟒 − 𝟐𝒂𝐛) + 𝟐 − 𝟐𝛌(𝟒 − 𝟐𝒂𝐛) − 𝟐𝒂𝐛 + 𝟒𝛌𝒂𝐛 − 𝟐𝛌𝟐𝒂𝟐𝐛𝟐

𝛌(𝟏 − 𝒂 + 𝛌𝒂𝟐)(𝟏 − 𝐛 + 𝛌𝐛𝟐)
 

=
𝟐

𝛌(𝟏 − 𝒂 + 𝛌𝒂𝟐)(𝟏 − 𝐛 + 𝛌𝐛𝟐)
. (𝛌𝟐(𝟏 − 𝒂𝐛)(𝟐 + 𝒂𝐛) − 𝟒𝛌(𝟏 − 𝒂𝐛) + (𝟏 − 𝒂𝐛)) 

=
𝟐(𝟏 − 𝒂𝐛)

𝛌(𝟏 − 𝒂 + 𝛌𝒂𝟐)(𝟏 − 𝐛 + 𝛌𝐛𝟐)
. (𝟐𝛌𝟐 + 𝛌𝟐𝒂𝐛 − 𝟒𝛌 + 𝟏) 

=
𝟐(𝟏 − 𝒂𝐛)(𝟐𝛌(𝛌 − 𝟐) + 𝛌𝟐𝒂𝐛 + 𝟏)

𝛌(𝟏 − 𝒂 + 𝛌𝒂𝟐)(𝟏 − 𝐛 + 𝛌𝐛𝟐)
≥ 𝟎 

(
∵ 𝟐 = 𝒂 + 𝐛 ≥

𝐀𝐌−𝐆𝐌
𝟐. √𝒂𝐛 ⇒ 𝟏 − 𝒂𝐛 ≥ 𝟎 𝒂𝐧𝐝 𝛌 − 𝟐 ≥ 𝟎 𝒂𝐧𝐝

(𝟏 − 𝒂 + 𝛌𝒂𝟐), (𝟏 − 𝐛 + 𝛌𝐛𝟐) > 0 𝑎𝐬 > ∆= 1 − 4𝝀 ≤
𝛌 ≥ 𝟐

− 𝟕 < 0
) 

∴
𝟏

𝟏 − 𝒂 + 𝛌𝒂𝟐
+

𝟏

𝟏 − 𝐛 + 𝛌𝐛𝟐
≥
𝟐√𝒂𝐛

𝛌
 ∀ 𝒂, 𝐛 > 0│𝒂 + 𝐛 = 𝟐 𝒂𝐧𝐝 𝛌 ≥ 𝟐, 

′′ =′′  𝐢𝐟𝐟 𝒂 = 𝐛 = 𝟏 (𝐐𝐄𝐃) 
 

2095. If 𝒂, 𝒃, 𝒄 > 0 then: 

𝒂

√𝟐𝒂 + 𝟑𝒃 + 𝟒𝒄
+

𝒃

√𝟐𝒃 + 𝟑𝒄 + 𝟒𝒂
+

𝒄

√𝟐𝒄 + 𝟑𝒂 + 𝟒𝒃
≥ √

𝒂 + 𝒃 + 𝒄

𝟑
 

Proposed by Dorin Mărghidanu-Romania 
 

Solution by Amin Hajiyev-Azerbaijan 

𝑳𝒆𝒎𝒎𝒂 𝟏.  (Weighted Jensen's Inequality): 

Let f(x) be a convex function on an interval I. For any 𝒙𝒊 ∈ 𝑰 and weights 𝒘𝒊 > 0, we have: 

∑𝒘𝒊𝒇(𝒙𝒊)

∑𝒘𝒊
≥ 𝒇 (

∑(𝒘𝒊𝒙𝒊)

∑𝒘𝒊
) 

𝑳𝒆𝒎𝒎𝒂 𝟐.         𝒂, 𝒃, 𝒄 ∈ 𝑹+                (𝒂 − 𝒃)𝟐 + (𝒃 − 𝒄)𝟐 + (𝒂 − 𝒄)𝟐 ≥ 𝟎                                 
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           𝟐𝒂𝟐 + 𝟐𝒃𝟐 + 𝟐𝒄𝟐 − 𝟐(𝒂𝒃 + 𝒂𝒄 + 𝒃𝒄) ≥ 𝟎      𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 ≥ 𝒂𝒃 + 𝒂𝒄 + 𝒃𝒄 

{
𝒘𝟏 = 𝒂,𝒘𝟐 = 𝒃,𝒘𝟑 = 𝒄                                                                   
𝒙𝟏 = 𝟐𝒂 + 𝟑𝒃 + 𝟒𝒄, 𝒙𝟐 = 𝟐𝒃 + 𝟑𝒄 + 𝟒𝒂, 𝒙𝟑 = 𝟐𝒄 + 𝟑𝒂 + 𝟒𝒃

 

𝒇(𝒙) =
𝟏

√𝒙
 (𝑫𝒆𝒄𝒓𝒆𝒂𝒔𝒊𝒏𝒈 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏),

𝒅𝟐

𝒅𝒙𝟐
𝒇(𝒙) =

𝟑

𝟒
𝒙−

𝟓
𝟐 ,   𝒙 ∈ (𝟎; +∞), 𝒇"(𝒙) > 0 

𝒘𝟏𝒇(𝒙𝟏) + 𝒘𝟐𝒇(𝒙𝟐) + 𝒘𝟑𝒇(𝒙𝟑)

𝒘𝟏 + 𝒘𝟐 +𝒘𝟑
≥ 𝒇(

𝒘𝟏𝒙𝟏 +𝒘𝟐𝒙𝟐 +𝒘𝟑𝒙𝟑
𝒘𝟏 +𝒘𝟐 +𝒘𝟑

) 

𝒂

√𝟐𝒂 + 𝟑𝒃 + 𝟒𝒄
+

𝒃

√𝟐𝒃 + 𝟑𝒄 + 𝟒𝒂
+

𝒄

√𝟐𝒄 + 𝟑𝒂 + 𝟒𝒃
𝒂 + 𝒃 + 𝒄

 

≥⏞
𝑱𝑬𝑵𝑺𝑬𝑵

√
𝒂 + 𝒃 + 𝒄

𝒂(𝟐𝒂 + 𝟑𝒃 + 𝟒𝒄) + 𝒃(𝟐𝒃 + 𝟑𝒄 + 𝟒𝒂) + 𝒄(𝟐𝒄 + 𝟑𝒂 + 𝟒𝒃)
 

𝑳𝑯𝑺 ≥ (𝒂 + 𝒃 + 𝒄)√
𝒂 + 𝒃 + 𝒄

𝟐(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐) + 𝟕(𝒂𝒃 + 𝒂𝒄 + 𝒃𝒄)
 

𝟐∑𝒂𝟐

𝒄𝒚𝒄

+ 𝟕∑𝒂𝒃

𝒄𝒚𝒄

≥ 𝟑∑𝒂𝟐

𝒄𝒚𝒄

+ 𝟔∑𝒂𝒃

𝒄𝒚𝒄

= 𝟑(𝒂 + 𝒃 + 𝒄)𝟐 

𝑳𝑯𝑺 ≥ (𝒂 + 𝒃 + 𝒄)√
𝒂 + 𝒃 + 𝒄

𝟑(𝒂 + 𝒃 + 𝒄)𝟐
= √

𝒂 + 𝒃 + 𝒄

𝟑
 

𝒂

√𝟐𝒂 + 𝟑𝒃 + 𝟒𝒄
+

𝒃

√𝟐𝒃 + 𝟑𝒄 + 𝟒𝒂
+

𝒄

√𝟐𝒄 + 𝟑𝒂 + 𝟒𝒃
≥ √

𝒂 + 𝒃 + 𝒄

𝟑
   (𝑸. 𝑬.𝑫) 

                                             Equality holds if and only if a = b = c 

2096. 𝐈𝐟 𝒂, 𝐛, 𝐜 > 0, 𝑎 + 𝐛 + 𝐜 = 𝟑 𝒂𝐧𝐝 𝐧 ∈ ℕ 𝐭𝐡𝐞𝐧 ∶ 

∑
𝒂(𝐛𝐧 + 𝐜𝐧)

√𝐛𝟐𝐧−𝟏 + 𝐜𝟐𝐧−𝟏
𝐜𝐲𝐜

≤ 𝟑√𝟐 

  Proposed by Marin Chirciu-Romania 
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Solution by Soumava Chakraborty-Kolkata-India 

𝐈𝐟 𝐧 = 𝟎,∑
𝒂(𝐛𝐧 + 𝐜𝐧)

√𝐛𝟐𝐧−𝟏 + 𝐜𝟐𝐧−𝟏
𝐜𝐲𝐜

=∑
𝟐𝒂. √𝐛𝐜

√𝐛 + 𝐜
𝐜𝐲𝐜

≤
𝐀𝐌−𝐆𝐌

∑
𝒂(𝐛 + 𝐜)

√𝐛 + 𝐜
𝐜𝐲𝐜

 

= ∑(√𝒂𝐛 + 𝒂𝐜.√𝒂)

𝐜𝐲𝐜

≤
𝐂𝐁𝐒

√𝟐∑𝒂𝐛

𝐜𝐲𝐜

. √∑𝒂

𝐜𝐲𝐜

≤ √
𝟐

𝟑
(∑𝒂

𝐜𝐲𝐜

)

𝟐

. √∑𝒂

𝐜𝐲𝐜

=
𝒂+𝐛+𝐜 = 𝟑

√𝟏𝟖 

= 𝟑√𝟐 𝒂𝐧𝐝 ∀ 𝐧 ∈ ℕ∗,∑
𝒂(𝐛𝐧 + 𝐜𝐧)

√𝐛𝟐𝐧−𝟏 + 𝐜𝟐𝐧−𝟏
𝐜𝐲𝐜

=∑
𝒂(𝐛𝐧 + 𝐜𝐧)

√𝐛
𝟐𝐧

𝐛
+
𝐜𝟐𝐧

𝐜
𝐜𝐲𝐜

≤
𝐁𝐞𝐫𝐠𝐬𝐭𝐫𝐨𝐦

∑
𝒂(𝐛𝐧 + 𝐜𝐧)

√(𝐛
𝐧 + 𝐜𝐧)𝟐

𝐛 + 𝐜
𝐜𝐲𝐜

 

= ∑(√𝒂𝐛 + 𝒂𝐜.√𝒂)

𝐜𝐲𝐜

≤
𝐂𝐁𝐒

√𝟐∑𝒂𝐛

𝐜𝐲𝐜

. √∑𝒂

𝐜𝐲𝐜

≤ √
𝟐

𝟑
(∑𝒂

𝐜𝐲𝐜

)

𝟐

. √∑𝒂

𝐜𝐲𝐜

=
𝒂+𝐛+𝐜 = 𝟑

√𝟏𝟖 

 

= 𝟑√𝟐 𝒂𝐧𝐝 𝐬𝐨,∑
𝒂(𝐛𝐧 + 𝐜𝐧)

√𝐛𝟐𝐧−𝟏 + 𝐜𝟐𝐧−𝟏
𝐜𝐲𝐜

≤ 𝟑√𝟐 ∀ 𝒂, 𝐛, 𝐜 > 0│𝑎 + 𝐛 + 𝐜 = 𝟑 𝒂𝐧𝐝 𝐧 ∈ ℕ, 

 
′′ =′′  𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 = 𝟏 (𝐐𝐄𝐃) 

 
2097. 𝐈𝐟 𝒂, 𝐛, 𝐜 > 0 𝑎𝐧𝐝 𝒂𝐛𝐜 = 𝟏 𝐭𝐡𝐞𝐧 𝐩𝐫𝐨𝐯𝐞 𝐭𝐡𝒂𝐭 ∶ 

𝒂 − 𝟏

√𝐛 + 𝐜
+
𝐛 − 𝟏

√𝐜 + 𝒂
+
𝐜 − 𝟏

√𝒂 + 𝐛
≥ 𝟎 

  Proposed by Nguyen Hung Cuong-Vietnam 

Solution by Soumava Chakraborty-Kolkata-India 

∑
𝒂− 𝟏

√𝐛 + 𝐜
𝐜𝐲𝐜

=∑
𝒂𝟐

𝒂.√𝐛 + 𝐜
𝐜𝐲𝐜

−∑
√(𝐜 + 𝒂)(𝒂 + 𝐛)

√(𝐛 + 𝐜)(𝐜 + 𝒂)(𝒂 + 𝐛)
𝐜𝐲𝐜

≥

𝐁𝐞𝐫𝐠𝐬𝐭𝐫𝐨𝐦

𝒂𝐧𝐝
𝐂𝐁𝐒

 

(∑ 𝒂𝐜𝐲𝐜 )
𝟐

∑ (√𝒂.√𝒂𝐛 + 𝒂𝐜)𝐜𝐲𝐜

−
𝟏

√(𝐛 + 𝐜)(𝐜 + 𝒂)(𝒂 + 𝐛)
. √∑(𝐜 + 𝒂)

𝐜𝐲𝐜

. √∑(𝒂 + 𝐛)

𝐜𝐲𝐜

 

≥
𝐂𝐁𝐒 (∑ 𝒂𝐜𝐲𝐜 )

𝟐

√∑ 𝒂𝐜𝐲𝐜 . √𝟐∑ 𝒂𝐛𝐜𝐲𝐜

−
𝟐∑ 𝒂𝐜𝐲𝐜

√(𝐛 + 𝐜)(𝐜 + 𝒂)(𝒂 + 𝐛)
≥

𝐀𝐌−𝐆𝐌
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𝟑∑ 𝒂𝐜𝐲𝐜

√𝟐.√∏ (𝐛 + 𝐜)𝐜𝐲𝐜 + 𝒂𝐛𝐜

−
𝟐∑ 𝒂𝐜𝐲𝐜

√∏ (𝐛 + 𝐜)𝐜𝐲𝐜

 (∵∑𝒂

𝐜𝐲𝐜

≥
𝐀𝐌−𝐆𝐌

𝟑. √𝒂𝐛𝐜
𝟑

=
𝒂𝐛𝐜 = 𝟏

𝟑) 

= (∑𝒂

𝐜𝐲𝐜

) .
𝟗∏ (𝐛 + 𝐜)𝐜𝐲𝐜 − 𝟖(∏ (𝐛 + 𝐜)𝐜𝐲𝐜 + 𝒂𝐛𝐜)

(𝟐(∏ (𝐛 + 𝐜)𝐜𝐲𝐜 + 𝒂𝐛𝐜) +∏ (𝐛 + 𝐜)𝐜𝐲𝐜 )

(

 𝟑

√𝟐.√∏ (𝐛 + 𝐜)𝐜𝐲𝐜 + 𝒂𝐛𝐜

+
𝟐

√∏ (𝐛 + 𝐜)𝐜𝐲𝐜 )

 

 

= (∑𝒂

𝐜𝐲𝐜

) .
∏ (𝐛 + 𝐜)𝐜𝐲𝐜 − 𝟖𝒂𝐛𝐜

(𝟐(∏ (𝐛 + 𝐜)𝐜𝐲𝐜 + 𝒂𝐛𝐜) +∏ (𝐛 + 𝐜)𝐜𝐲𝐜 )

(

 𝟑

√𝟐.√∏ (𝐛 + 𝐜)𝐜𝐲𝐜 + 𝒂𝐛𝐜

+
𝟐

√∏ (𝐛 + 𝐜)𝐜𝐲𝐜 )

 

 

≥ 𝟎 𝐯𝐢𝒂 𝐂𝐞𝐬𝒂𝐫𝐨 ∴
𝒂 − 𝟏

√𝐛 + 𝐜
+
𝐛 − 𝟏

√𝐜 + 𝒂
+
𝐜 − 𝟏

√𝒂 + 𝐛
≥ 𝟎  ∀ 𝒂, 𝐛, 𝐜 > 0│𝑎𝐛𝐜 = 𝟏, 

 
′′ =′′  𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 = 𝟏 (𝐐𝐄𝐃) 

 

2098. If 𝒂, 𝒃, 𝒄 > 0, 𝒂 + 𝒃 + 𝒄 = 𝟑 then: 

𝒂𝟐 − 𝟏

𝒃 + 𝒄
+
𝒃𝟐 − 𝟏

𝒂 + 𝒄
+
𝒄𝟐 − 𝟏

𝒂 + 𝒃
≥ 𝟎 

Proposed by Nguyen Hung Cuong-Vietnam 
Solution by Amin Hajiyev-Azerbaijan 

𝒂, 𝒃, 𝒄 > 0 

𝒂 + 𝒃 + 𝒄 = 𝟑 → {
𝒂 + 𝒃 = 𝟑 − 𝒄
𝒂 + 𝒄 = 𝟑 − 𝒃
𝒃 + 𝒄 = 𝟑 − 𝒂

 

𝒂𝟐 − 𝟏

𝟑 − 𝒂
+
𝒃𝟐 − 𝟏

𝟑 − 𝒃
+
𝒄𝟐 − 𝟏

𝟑 − 𝒄
≥ 𝟎 → 𝒕𝒂𝒏𝒈𝒆𝒏𝒕 𝒍𝒊𝒏𝒆 𝒎𝒆𝒕𝒉𝒐𝒅 𝒇(𝒙) =

𝒙𝟐 − 𝟏

𝟑 − 𝒙
 

(𝒙 − 𝟏)𝟐 ≥ 𝟎  𝒙𝟐 − 𝟐𝒙 + 𝟏 ≥ 𝟎   𝟐𝒙𝟐 − 𝟒𝒙+ 𝟐 ≥ 𝟎 
𝒙𝟐 − 𝟏 + 𝒙𝟐 − 𝟒𝒙 + 𝟑 ≥ 𝟎 → 𝒙𝟐 − 𝟏 + (𝒙 − 𝟏)(𝒙 − 𝟑) ≥ 𝟎 

𝒙𝟐 − 𝟏 ≥ (𝒙 − 𝟏)(𝟑 − 𝒙) → 
𝒙𝟐 − 𝟏

𝟑 − 𝒙
≥ 𝒙 − 𝟏 

𝒂𝟐 − 𝟏

𝟑 − 𝒂
≥ 𝒂 − 𝟏 → ∑

𝒂𝟐 − 𝟏

𝒃 + 𝒄
𝒄𝒚𝒄

≥ (𝒂 − 𝟏) + (𝒃 − 𝟏) + (𝒄 − 𝟏) 

∑
𝒂𝟐 − 𝟏

𝒃 + 𝒄
𝒄𝒚𝒄

≥ 𝒂 + 𝒃 + 𝒄 − 𝟑 = 𝟎 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒇𝒐𝒓 𝒂 = 𝒃 = 𝒄 = 𝟏. 
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2099. 𝐈𝐟 𝒂, 𝐛, 𝐜 > 1 𝑎𝐧𝐝 𝒂 + 𝐛 + 𝐜 = 𝟔 𝐭𝐡𝐞𝐧 𝐩𝐫𝐨𝐯𝐞 𝐭𝐡𝒂𝐭 ∶ 

𝒂 − 𝟏

𝐛𝟐
+
𝐛 − 𝟏

𝐜𝟐
+
𝐜 − 𝟏

𝒂𝟐
≥
𝟑

𝟒
 

  Proposed by Nguyen Hung Cuong-Vietnam 

Solution by Soumava Chakraborty-Kolkata-India 

∑
𝒂−𝟏

𝐛𝟐
𝐜𝐲𝐜

=∑
(𝒂 − 𝟏)𝟑

(𝒂𝐛 − 𝐛)𝟐
𝐜𝐲𝐜

≥
𝐑𝒂𝐝𝐨𝐧 (∑ 𝒂𝐜𝐲𝐜 − 𝟑)

𝟑

(∑ 𝒂𝐛𝐜𝐲𝐜 −∑ 𝒂𝐜𝐲𝐜 )
𝟐 ≥

(∑ 𝒂𝐜𝐲𝐜 − 𝟑)
𝟑

(
(∑ 𝒂𝐜𝐲𝐜 )

𝟐

𝟑 − ∑ 𝒂𝐜𝐲𝐜 )

𝟐 

=
𝒂+𝐛+𝐜 = 𝟔 𝟑𝟑

(𝟏𝟐 − 𝟑)𝟐
=
𝟑

𝟒
∴
𝒂 − 𝟏

𝐛𝟐
+
𝐛 − 𝟏

𝐜𝟐
+
𝐜 − 𝟏

𝒂𝟐
≥
𝟑

𝟒
 ∀ 𝒂, 𝐛, 𝐜 > 1│𝑎 + 𝐛 + 𝐜 = 𝟔, 

′′ =′′  𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 = 𝟐 (𝐐𝐄𝐃) 
 

2100. 𝐈𝐟 𝒂, 𝐛, 𝐜 > 0, 𝑎 + 𝐛 + 𝐜 = 𝟑 𝒂𝐧𝐝 𝛌 ≥ 𝟐 𝐭𝐡𝐞𝐧 ∶ 

∑
(𝛌 + 𝟏)𝒂 + 𝟏

(𝛌𝒂 + 𝟏)𝟐
𝐜𝐲𝐜

≥
𝟑(𝛌 + 𝟐)

(𝛌 + 𝟏)𝟐
 

  Proposed by Marin Chirciu-Romania 

Solution by Soumava Chakraborty-Kolkata-India 

(𝛌 + 𝟏)𝒂 + 𝟏

(𝛌𝒂 + 𝟏)𝟐
− (

𝛌 + 𝟐

(𝛌 + 𝟏)𝟐
+
(𝟏 − 𝒂)(𝛌𝟐 + 𝟐𝛌 − 𝟏)

(𝛌 + 𝟏)𝟑
) 

=
−𝒂𝟐𝛌𝟑 + 𝒂𝛌𝟑 − 𝟐𝒂𝟐𝛌𝟐 + 𝒂𝛌𝟐 − 𝒂𝛌 + 𝛌𝟐 + 𝒂 + 𝛌 − 𝟏

(𝛌𝒂 + 𝟏)𝟐(𝛌 + 𝟏)𝟐
−
(𝟏 − 𝒂)(𝛌𝟐 + 𝟐𝛌 − 𝟏)

(𝛌 + 𝟏)𝟑
 

=
(𝟏 − 𝒂)(𝛌𝟑𝒂 + 𝟐𝛌𝟐𝒂 + 𝛌𝟐 + 𝛌 − 𝟏)

(𝛌𝒂 + 𝟏)𝟐(𝛌 + 𝟏)𝟐
−
(𝟏 − 𝒂)(𝛌𝟐 + 𝟐𝛌 − 𝟏)

(𝛌 + 𝟏)𝟑
 

=
𝟏 − 𝒂

(𝛌 + 𝟏)𝟐
.
−𝒂𝟐𝛌𝟒 + 𝒂𝛌𝟒 − 𝟐𝒂𝟐𝛌𝟑 + 𝒂𝛌𝟑 + 𝛌𝟑 + 𝒂𝟐𝛌𝟐 − 𝟐𝒂𝛌𝟐 + 𝛌𝟐 + 𝟐𝒂𝛌 − 𝟐𝛌

(𝛌𝒂 + 𝟏)𝟐(𝛌 + 𝟏)
 

=
(𝟏 − 𝒂)𝟐

(𝛌 + 𝟏)𝟐
.
𝒂𝛌𝟒 + 𝟐𝒂𝛌𝟑 − 𝒂𝛌𝟐 + 𝛌(𝛌𝟐 + 𝛌 − 𝟐)

(𝛌𝒂 + 𝟏)𝟐(𝛌 + 𝟏)
 

=
(𝟏 − 𝒂)𝟐 (𝒂𝛌𝟐(𝛌𝟐 + 𝟐𝛌 − 𝟏) + 𝛌(𝛌 − 𝟏)(𝛌 + 𝟐))

(𝛌 + 𝟏)𝟑(𝛌𝒂 + 𝟏)𝟐
≥ 𝟎  ∀ 𝒂 > 0 𝑎𝐧𝐝 ∀ 𝛌 ≥ 𝟏 

∴
(𝛌 + 𝟏)𝒂 + 𝟏

(𝛌𝒂 + 𝟏)𝟐
≥

𝛌 + 𝟐

(𝛌 + 𝟏)𝟐
+
(𝟏 − 𝒂)(𝛌𝟐 + 𝟐𝛌 − 𝟏)

(𝛌 + 𝟏)𝟑
 𝒂𝐧𝐝 𝒂𝐧𝒂𝒍𝐨𝐠𝐬 
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∀ 𝒂, 𝐛, 𝐜 > 0 𝑎𝐧𝐝 ∀ 𝛌 ≥ 𝟏 ∴∑
(𝛌 + 𝟏)𝒂 + 𝟏

(𝛌𝒂 + 𝟏)𝟐
𝐜𝐲𝐜

≥ 

𝟑(𝛌 + 𝟐)

(𝛌 + 𝟏)𝟐
+
𝛌𝟐 + 𝟐𝛌 − 𝟏

(𝛌 + 𝟏)𝟑
. (𝟑 −∑𝒂

𝐜𝐲𝐜

) =
𝒂+𝐛+𝐜 = 𝟑 𝟑(𝛌 + 𝟐)

(𝛌 + 𝟏)𝟐
 𝒂𝐧𝐝 𝐬𝐨, 

∑
(𝛌 + 𝟏)𝒂 + 𝟏

(𝛌𝒂 + 𝟏)𝟐
𝐜𝐲𝐜

≥
𝟑(𝛌 + 𝟐)

(𝛌 + 𝟏)𝟐
 ∀ 𝒂, 𝐛, 𝐜 > 0│𝑎 + 𝐛 + 𝐜 = 𝟑 𝒂𝐧𝐝 𝛌 ≥ 𝟏, 

′′ =′′  𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 = 𝟏 (𝐐𝐄𝐃) 
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It’s nice to be important but more important it’s to be nice. 

At this paper works a TEAM. 

This is RMM TEAM. 

To be continued! 

Daniel Sitaru 

 

 

 


