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In this work a weighted version of Radon's inequality is studied.
Equivalents of Radon's weighted inequality , with Hélder's weighted
inequality and with Jensen's weighted inequality are also demonstrated.
Various consequences of this inequality are also exposed .
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A relatively well-known inequality that has been used more in the last two decades
is Radon's inequality . However, it is much older, having been published in 1913., v. [8] :
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Radon's inequality 1s a generalization of the much more popular Bergstrom's inequality

- which is obtained for p=1.

For the interesting Radon inequality , they are known many more proofs ,
extensions , generalizations and various refinements, - as can be seen for example
in the works: [1]-[6] ,[9]. In what follows, we are interested in obtaining a
weighted version of Radon's inequality (R) .

We will thus have the following statement ,
1. Proposition ( weighted Radon's inequality ) , [8]
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Proof2 ( by applying the weighted Holder inequality )
With the substitutions % —/By9 , 3=} , k€ {1,2,~,n} , in the

weighted Holder inequality ,
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that is - the weighted Radon inequality
Proof3 ( by applying weighted Jensen inequality )

e if f:R —> R isaconvex function, then for any weights 4, >0 ,

kef{l,2,---,n}, for which we have Z A, =1 , then holds the weighted Jensen
k=1

inequality, Zn: Af(x,) 2 f(Z /?,kxk] ; (wd)
=1 =1

with equality if and only if x;=x,=...=x, .
With the convex function f: R —— R , f(x) =x’ *l , by substitutions :
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we will have successively :
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2. Remark
If in (wB) from Proposition 1, we take w; =w, =...=w, , we obtain the

(R) - the unweighted version of Radon inequality .

Ifin (wB) we consider p =1, we obtain the weighted Bergstrom inequality,
studied in detail in [7] .

3. Corollary
For ne N°, p20, a1,a2,...,a,20, by, b,,...,b,>0 ,holds the inequality,
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Proof
In the inequality (wR) we take the weights , wy =k , k€{1,2,---,n}, and the
inequality from the statement is obtained .

4. Corollary
For real numbers a; >a,>...>a, >a,;120 ,andn € N, p =0 holds the



inequality ,
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After a light preparation and then , by applying weighted Radon's inequality ,
we have :
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5. Corollary , [4]

For the natural numbers m and n and for real positive numbers a, b, ¢ ; wy, w, , w3
holds the inequality ,
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Using the weighted GM-AM inequality , in the form , X"yt <

m+n

and then the weighted Radon inequality, (wR) , we have :
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Ifin (3) we put w; =w,=w3; >0 , we obtain the inequality from [4] ,

am+n+1 bm+n+1 Cm+n+1
+ + > atb+tc - @)

b"-c" a" a™-p"

6. Proposition ( generalized weighted Radon's inequality )

For neN*,p>0,r2p+1 , a1, ,...,a,20, by,by,...,b,>0 ,and for
any wiy, wy,...,w,>0 | then holds the inequality ,
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Proof
Using the generalized Radon inequality (see for example [5], [6] ),
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we have very simply :



r r _.r
S5y G = S M s ) S =
k D Ppp P - r—p—1 p
k=1 b = Wb = (wb,) " [iw b
k7k
k=1

Ifin (gwR) we take r = p+1, we obtain the weighted Radon inequality .

Between Radon's unweighted and Radon's weighted inequalities , we would be
inclined to believe that the weighted one is more general . In fact, the two versions
are equivalent, as shown by the following :

7. Proposition

(Unweighted) Radon's inequality (R) and weighted Radon's inequality (wR)
they are equivalent inequalities .

Proof

Regarding the Proposition 1 , in Proof 1 , we practically proved the implication :
Radon's inequality (R) —> weighted Radon's inequality (wR) .

The other implication ,
weighted Radon's inequality (wR) —> Radon's inequality (R) ,

it is obtained by simply considering the equality of weights w; =w, =...=w, in
inequality (wR).

In the same manner , the following equivalence takes place :

8. Proposition

The weighted Hélder inequality (wH) and weighted Radon's inequality (wR)
are equivalent inequalities .

Proof

In Proof2 from Proposition1 we practically proved the implication :

weighted Holder inequality, (wH) —> weighted Radon's inequality (wR) .

The other implication ,

weighted Radon's inequality (wR) —> weighted Hélder inequality (wH) |,



we will demonstrate it as follows. In weighted Radon's inequality, written in the
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mean exactly the weighted Holder inequality .

In [6], Radon's (unweighted) inequality was equivalently described in terms

of means .
Thus, if we denote ,
a,ta,+ ... +a,

A, (ay,a,, ... ,a,):= . ,

(arithmetic mean) “4)

then the inequality (R) — from the beginning of this work is thus transposed :

(Radon's inequality in the language of arithmetic means)
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Also the generalized weighted Radon inequality - (gWR) , can be written equivalently

in the language of arithmetic means , as follows :

9. Corollary (generalized weighted Radon's inequality in language of means)
,a,20, by,by,...,b,>0 ,and for
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Proof

Indeed , we have the equivalents :
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And here, if we consider the weighted arithmetic mean ,
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weighted arithmetic means as follows :
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