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             A relatively well-known inequality that has been used more in the last two decades  
         is Radon's inequality . However, it is much older, having been published in 1913., v. [8] :      
  

                   If  n  ℕ*  ,  a i  0  , b i > 0  ,  ,( ) 1= i n  ,  p  0 ,  then  , 
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               Radon's inequality is a generalization of the much more popular Bergström's inequality   

           - which is obtained for  p = 1 . 

              For the interesting Radon inequality , they are known many more proofs ,     
          extensions , generalizations and various refinements, - as can be seen for example   
          in the works: [1] - [6]  , [9]. In what follows, we are interested in obtaining a   
          weighted  version of  Radon's inequality  (R) . 
.  

                We will thus have the following statement , 
                                       

                  1. Proposition  ( weighted Radon's  inequality ) , [8] 
                    

                    If  n  ℕ*  ,   p  0  ,  a1  , a2  , . . . , an ≥ 0  ,  b1  , b2  , . . . , bn > 0   
            and  for any  w1  , w2  , . . . , wn > 0  , then holds the inequality , 
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   Proof 1   ( by applying  unweighted– Radon's inequality ) 
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    Proof 2    ( by applying the  weighted  Hölder  inequality ) 
 

        With the substitutions    , , , ,11 1 2 q
kk k

q
k kx a b y b k     n     in the   

      weighted  Hölder  inequality ,   
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      with   1/p + 1/q = 1  .  we have successively , 
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             that is - the  weighted Radon inequality 
 

                    Proof 3    ( by applying  weighted Jensen inequality ) 
                
 

       if   f : ℝ   ℝ   is a convex function , then for any  weights 0k  ,   

    , , ,  1  2    { }k n , for which we have 
1
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 , then holds the weighted Jensen            
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                with equality if and only if   x1 = x2 = . . . = xn  . 

                 With the convex function  f : ℝ   ℝ  , ,   by substitutions :+1( ) = px xf
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we will have successively :
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        2. Remark 
 
 

       If in  ( w B)  from Proposition 1, we take    w1  = w2  = . . . = wn  , we obtain the    
  (R)  - the unweighted version of   Radon  inequality . 
     If in  ( w B)  we consider  p = 1, we obtain the weighted Bergström inequality, 
  studied in detail in [7] . 
 

      3. Corollary   
 

               For  n  ℕ* ,  p  0 ,  a1  , a2  , . . . , an ≥ 0 ,  b1  , b2  , . . . , bn > 0  , holds the inequality , 
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Proof       

               In the inequality ( w R )  we take the weights , wk = k  , , , , ,  1  2    { }k n   and the   
            inequality from the statement is obtained . 
        

               4. Corollary    
  

                 For real numbers  a1  > a2  > . . . > an  > an+1 ≥ 0  , and n  ℕ* ,  p  0    holds the     
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Proof 

        After a light preparation and then , by applying  weighted Radon's  inequality ,   

  we have :  
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               5. Corollary  , [4]  
 

                 For the natural numbers m and n and for real positive numbers  a , b , c  ; w1  , w2  , w3        
           holds the inequality ,
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             Proof      

             Using the weighted  GM-AM inequality , in the form ,
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         and then the weighted Radon inequality, ( w R ) , we have :  
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             If in (3) we put  w1  = w2 = w3 > 0  , we obtain the inequality from [4] , 
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      6. Proposition  ( generalized weighted Radon's  inequality ) 
 

               For  n  ℕ* ,  p > 0 , r  p+1  , a1  , a2  , . . . , an ≥ 0 ,  b1  , b2  , . . . , bn > 0  , and for  
           any  w1  , w2  , . . . , wn > 0  , then holds the inequality , 
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                 Proof                

              Using the generalized Radon inequality (see for example [5] , [6] ) , 
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         we have very simply :                                                 
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               If in  (gwR)  we take  r = p+1 , we obtain the weighted Radon inequality .            

 

 

\              Between Radon's unweighted and  Radon's weighted inequalities , we would be    
 inclined to believe that the weighted one is more general . In fact, the two versions   
 are equivalent, as shown by the following : 

 

                7. Proposition                    

     (Unweighted ) Radon's inequality  ( R ) and weighted Radon's inequality ( w R )      
 they are equivalent inequalities .  
 

               Proof 
 

             Regarding the Proposition 1 , in Proof 1 ,  we practically proved the implication : 

                     Radon's inequality ( R )     weighted Radon's inequality ( w R ) . 

             The other implication ,   

            weighted Radon's inequality ( w R )      Radon's inequality ( R )  , 

 it is obtained by simply considering the equality of weights  w1  = w2  = . . . = wn   in    
 inequality  ( w R ) . 
 

   In the same manner , the following equivalence takes place : 
 

   8. Proposition                    

   The weighted  Hölder  inequality ( w H ) and weighted Radon's inequality ( w R )  
are equivalent inequalities .             

 

               Proof 
 

             In Proof 2  from  Proposition 1   we practically proved the implication : 

                weighted  Hölder  inequality, ( w H )    weighted Radon's inequality ( w R ) . 
 

            The other implication ,     

                weighted Radon's inequality ( w R )      weighted  Hölder  inequality  ( w H )  , 
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In [6] , Radon's  (unweighted)  inequality was equivalently described in terms 

of means .  
     Thus, if we denote , 
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  ,   (arithmetic mean)               (4)   

       then the inequality (R) – from the beginning of this work is thus transposed : 
 

             (Radon's inequality in the language of arithmetic means)   
            if   n  ℕ *  ,  a i  0  0 , b i > 0  ,  ,( ) 1= i n  ,  p  0  ,  then , 
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         with equality if and only if   
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              Also the generalized weighted Radon inequality - (gwR) , can be written equivalently 

in the language of arithmetic means , as follows : 
 

     9. Corollary  ( generalized weighted Radon's inequality in language of means) 
 

               For  n  ℕ* ,  p > 0 , r  p+1  , a1  , a2  , . . . , an ≥ 0 ,  b1  , b2  , . . . , bn > 0  , and for  
           any  w1  , w2  , . . . , wn > 0  , then holds the inequality , 
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                 Proof 
                      

             Indeed , we have the equivalents : 
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            And here, if we consider the weighted arithmetic mean ,  
 

           , , , ; , , ,1 2 1 2 1 1 2 2(   )… … …n n n n na a a w w w w a + w a + + w a  ,            (5)  
   

        then weighted Radon's inequality , ( w B ) - will be transcribed in the language of   
         weighted  arithmetic means  as follows : 
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