

Weighted Radon inequality

Dorin Marghidanu ,
d.marghidanu@gmail.com

*In this work a weighted version of Radon's inequality is studied.
Equivalents of Radon's weighted inequality , with Hölder's weighted
inequality and with Jensen's weighted inequality are also demonstrated.
Various consequences of this inequality are also exposed .*

Key words : weighted Radon's inequality , weighted Hölder's inequality ,
Jensen's inequality , weights

2020 Mathematics Subject Classification : 26D15

A relatively well-known inequality that has been used more in the last two decades is **Radon's inequality** . However, it is much older, having been published in 1913., v. [8] :

- If $n \in \mathbb{N}^*$, $a_i \geq 0$, $b_i > 0$, $(\forall) i = \overline{1, n}$, $p \geq 0$, then ,

$$\frac{a_1^{p+1}}{b_1^p} + \frac{a_2^{p+1}}{b_2^p} + \dots + \frac{a_n^{p+1}}{b_n^p} \geq \frac{(a_1 + a_2 + \dots + a_n)^{p+1}}{(b_1 + b_2 + \dots + b_n)^p} , \quad (\mathbf{R})$$

with equality if and only if, $\frac{a_1}{b_1} = \frac{a_2}{b_2} = \dots = \frac{a_n}{b_n}$.

Radon's inequality is a generalization of the much more popular *Bergström's inequality* - which is obtained for $p = 1$.

For the interesting *Radon inequality* , they are known many more proofs , extensions , generalizations and various refinements, - as can be seen for example in the works: [1] - [6] , [9]. In what follows, we are interested in obtaining a *weighted* version of *Radon's inequality* (R) .

We will thus have the following statement ,

1. Proposition (weighted Radon's inequality) , [8]

If $n \in \mathbb{N}^*$, $p \geq 0$, $a_1, a_2, \dots, a_n \geq 0$, $b_1, b_2, \dots, b_n > 0$ and for any $w_1, w_2, \dots, w_n > 0$, then holds the inequality ,

$$w_1 \cdot \frac{a_1^{p+1}}{b_1^p} + w_2 \cdot \frac{a_2^{p+1}}{b_2^p} + \dots + w_n \cdot \frac{a_n^{p+1}}{b_n^p} \geq \frac{(w_1 \cdot a_1 + w_2 \cdot a_2 + \dots + w_n \cdot a_n)^{p+1}}{(w_1 \cdot b_1 + w_2 \cdot b_2 + \dots + w_n \cdot b_n)^p} , \quad (\text{wR})$$

with equality if and only if $\frac{a_1}{b_1} = \frac{a_2}{b_2} = \dots = \frac{a_n}{b_n}$.

Proof 1 (by applying *unweighted– Radon's inequality*)

$$\begin{aligned} w_1 \cdot \frac{a_1^{p+1}}{b_1^p} + w_2 \cdot \frac{a_2^{p+1}}{b_2^p} + \dots + w_n \cdot \frac{a_n^{p+1}}{b_n^p} &= \\ &= \frac{(w_1 a_1)^{p+1}}{(w_1 b_1)^p} + \frac{(w_2 a_2)^{p+1}}{(w_2 b_2)^p} + \dots + \frac{(w_n a_n)^{p+1}}{(w_n b_n)^p} \stackrel{\text{Radon}}{\geq} \\ &\stackrel{\text{Radon}}{\geq} \frac{(w_1 \cdot a_1 + w_2 \cdot a_2 + \dots + w_n \cdot a_n)^{p+1}}{(w_1 \cdot b_1 + w_2 \cdot b_2 + \dots + w_n \cdot b_n)^p} , \end{aligned}$$

Proof 2 (by applying the *weighted Hölder inequality*)

With the substitutions $x_k \rightarrow a_k / b_k^{1/q}$, $y_k \rightarrow b_k^{1/q}$, $k \in \{1, 2, \dots, n\}$, in the

weighted Hölder inequality ,

$$\left(\sum_{k=1}^n w_k x_k^p \right)^{\frac{1}{p}} \cdot \left(\sum_{k=1}^n w_k y_k^q \right)^{\frac{1}{q}} \geq \sum_{k=1}^n w_k x_k y_k , \quad (\text{wH})$$

with $1/p + 1/q = 1$. we have successively ,

$$\begin{aligned} &\left(\sum_{k=1}^n w_k \left(\frac{a_k}{b_k^{1/q}} \right)^p \right)^{\frac{1}{p}} \cdot \left(\sum_{k=1}^n w_k (b_k^{1/q})^q \right)^{\frac{1}{q}} \geq \sum_{k=1}^n w_k \cdot \frac{a_k}{b_k^{1/q}} \cdot b_k^{1/q} \iff \\ &\iff \left(\sum_{k=1}^n w_k \cdot \frac{a_k^p}{b_k^{p/q}} \right)^{\frac{1}{p}} \cdot \left(\sum_{k=1}^n w_k \cdot b_k \right)^{\frac{1}{q}} \geq \sum_{k=1}^n w_k \cdot a_k \iff \end{aligned}$$

:

$$\begin{aligned}
 &\Leftrightarrow \left(\sum_{k=1}^n w_k \cdot \frac{a_k^p}{b_k^{p-1}} \right)^{\frac{1}{p}} \cdot \left(\sum_{k=1}^n w_k \cdot b_k \right)^{\frac{1}{q}} \geq \sum_{k=1}^n w_k \cdot a_k \Leftrightarrow \\
 &\Leftrightarrow \sum_{k=1}^n w_k \cdot \frac{a_k^p}{b_k^{p-1}} \geq \frac{\left(\sum_{k=1}^n w_k \cdot a_k \right)^p}{\left(\sum_{k=1}^n w_k \cdot b_k \right)^q} = \frac{\left(\sum_{k=1}^n w_k \cdot a_k \right)^p}{\left(\sum_{k=1}^n w_k \cdot b_k \right)^{p-1}} ,
 \end{aligned}$$

that is - the *weighted Radon inequality*

Proof 3 (by applying *weighted Jensen inequality*)

- if $f: \mathbb{R} \rightarrow \mathbb{R}$ is a convex function , then for any weights $\lambda_k > 0$, $k \in \{1, 2, \dots, n\}$, for which we have $\sum_{k=1}^n \lambda_k = 1$, then holds the **weighted Jensen inequality** ,
$$\sum_{k=1}^n \lambda_k f(x_k) \geq f\left(\sum_{k=1}^n \lambda_k x_k\right) , \quad (wJ)$$
 with equality if and only if $x_1 = x_2 = \dots = x_n$.

With the convex function $f: \mathbb{R} \rightarrow \mathbb{R}$, $f(x) = x^{p+1}$, by substitutions : $x_k \rightarrow \frac{a_k}{b_k}$, $\lambda_k \rightarrow \frac{w_k b_k}{\sum_{k=1}^n w_k b_k}$, $k \in \{1, 2, \dots, n\}$, in which , obviously $\sum_{k=1}^n \lambda_k = 1$, we will have successively :

$$\begin{aligned}
& \sum_{k=1}^n \frac{w_k b_k}{\sum_{k=1}^n w_k b_k} \cdot \left(\frac{a_k}{b_k} \right)^{p+1} \geq \left(\sum_{k=1}^n \frac{w_k b_k}{\sum_{k=1}^n w_k b_k} \cdot \frac{a_k}{b_k} \right)^{p+1} \Leftrightarrow \\
& \Leftrightarrow \frac{\sum_{k=1}^n w_k \cdot \frac{a_k^{p+1}}{b_k^p}}{\sum_{k=1}^n w_k b_k} \geq \frac{1}{\left(\sum_{k=1}^n w_k b_k \right)^{p+1}} \cdot \left(\sum_{k=1}^n w_k a_k \right)^{p+1} \Leftrightarrow \\
& \Leftrightarrow \sum_{k=1}^n w_k \cdot \frac{a_k^{p+1}}{b_k^p} \geq \frac{\left(\sum_{k=1}^n w_k a_k \right)^{p+1}}{\left(\sum_{k=1}^n w_k b_k \right)^p} .
\end{aligned}$$

2. Remark

If in **(wB)** from *Proposition 1*, we take $w_1 = w_2 = \dots = w_n$, we obtain the **(R)** - the *unweighted* version of *Radon inequality*.

If in **(wB)** we consider $p = 1$, we obtain the *weighted Bergström inequality*, studied in detail in [7].

3. Corollary

For $n \in \mathbb{N}^*$, $p \geq 0$, $a_1, a_2, \dots, a_n \geq 0$, $b_1, b_2, \dots, b_n > 0$, holds the inequality,

$$1 \cdot \frac{a_1^{p+1}}{b_1^p} + 2 \cdot \frac{a_2^{p+1}}{b_2^p} + \dots + n \cdot \frac{a_n^{p+1}}{b_n^p} \geq \frac{(1 \cdot a_1 + 2 \cdot a_2 + \dots + n \cdot a_n)^{p+1}}{(1 \cdot b_1 + 2 \cdot b_2 + \dots + n \cdot b_n)^p} , \quad (1)$$

with equality if and only if $\frac{a_1}{b_1} = \frac{a_2}{b_2} = \dots = \frac{a_n}{b_n}$.

Proof

In the inequality **(wR)** we take the weights, $w_k = k$, $k \in \{1, 2, \dots, n\}$, and the inequality from the statement is obtained.

4. Corollary

For real numbers $a_1 > a_2 > \dots > a_n > a_{n+1} \geq 0$, and $n \in \mathbb{N}^*$, $p \geq 0$ holds the

inequality ,

$$\sum_{k=1}^n \frac{k}{(a_k - a_{k+1})^p} \geq \left(\frac{n \cdot (n+1)}{2} \right)^{p+1} \cdot \frac{1}{\left(\sum_{k=1}^n (a_k - a_{k+1}) \right)^p} . \quad (2)$$

Proof

After a light preparation and then , by applying ***weighted Radon's inequality*** , we have :

$$\begin{aligned} \sum_{k=1}^n \frac{k}{(a_k - a_{k+1})^p} &= \sum_{k=1}^n k \cdot \frac{1^{p+1}}{(a_k - a_{k+1})^p} \stackrel{(wR)}{\geq} \frac{\left(\sum_{k=1}^n k \cdot 1 \right)^{p+1}}{\left[\sum_{k=1}^n k \cdot (a_k - a_{k+1}) \right]^p} = \\ &= \left(\sum_{k=1}^n k \right)^{p+1} \cdot \frac{1}{[(a_1 + a_2 + \dots + a_n) - n \cdot a_{n+1}]^p} = \left(\frac{n \cdot (n+1)}{2} \right)^{p+1} \cdot \frac{1}{\left(\sum_{k=1}^n (a_k - a_{k+1}) \right)^p} . \end{aligned}$$

5. Corollary , [4]

For the natural numbers m and n and for real positive numbers $a, b, c ; w_1, w_2, w_3$ holds the inequality ,

$$\begin{aligned} w_1 \cdot \frac{a^{m+n+1}}{b^m \cdot c^n} + w_2 \cdot \frac{b^{m+n+1}}{c^m \cdot a^n} + w_3 \cdot \frac{c^{m+n+1}}{a^m \cdot b^n} &\geq \\ \geq (m+n)^{m+n} \cdot \frac{(w_1 a + w_2 b + w_3 c)^{m+n+1}}{[(w_2 n + w_3 m) a + (w_1 m + w_3 n) b + (w_1 n + w_2 m) c]^{m+n}} , \end{aligned} \quad (3)$$

Proof

Using the ***weighted GM-AM inequality*** , in the form , $x^m \cdot y^n \leq \left(\frac{mx+ny}{m+n} \right)^{m+n}$,

and then the ***weighted Radon inequality*** , (wR) , we have :

$$\begin{aligned}
& w_1 \cdot \frac{a^{m+n+1}}{b^m \cdot c^n} + w_2 \cdot \frac{b^{m+n+1}}{c^m \cdot a^n} + w_3 \cdot \frac{c^{m+n+1}}{a^m \cdot b^n} \stackrel{(GM-AM)}{\geq} \\
& \stackrel{(GM-AM)}{\geq} w_1 \cdot \frac{a^{m+n+1}}{\left(\frac{mb+nc}{m+n}\right)^{m+n}} + w_2 \cdot \frac{b^{m+n+1}}{\left(\frac{mc+na}{m+n}\right)^{m+n}} + w_3 \cdot \frac{c^{m+n+1}}{\left(\frac{ma+nb}{m+n}\right)^{m+n}} \stackrel{(wR)}{\geq} \\
& \stackrel{(wR)}{\geq} (m+n)^{m+n} \cdot \frac{(w_1 a + w_2 b + w_3 c)^{m+n+1}}{[(w_1 \cdot (mb+nc) + w_2 \cdot (mc+na) + w_3 \cdot (ma+nb))]^{m+n}} = \\
& = (m+n)^{m+n} \cdot \frac{(w_1 a + w_2 b + w_3 c)^{m+n+1}}{[(w_2 n + w_3 m) a + (w_1 m + w_3 n) b + (w_1 n + w_2 m) c]^{m+n}} .
\end{aligned}$$

If in (3) we put $w_1 = w_2 = w_3 > 0$, we obtain the inequality from [4],

$$\frac{a^{m+n+1}}{b^m \cdot c^n} + \frac{b^{m+n+1}}{c^m \cdot a^n} + \frac{c^{m+n+1}}{a^m \cdot b^n} \geq a+b+c . \quad (4)$$

6. Proposition (generalized weighted Radon's inequality)

For $n \in \mathbb{N}^*$, $p > 0$, $r \geq p+1$, $a_1, a_2, \dots, a_n \geq 0$, $b_1, b_2, \dots, b_n > 0$, and for any $w_1, w_2, \dots, w_n > 0$, then holds the inequality,

$$\sum_{k=1}^n w_k^{r-p} \cdot \frac{a_k^r}{b_k^p} \geq \frac{1}{n_k^{r-p-1}} \cdot \frac{\left(\sum_{k=1}^n w_k a_k \right)^r}{\left(\sum_{k=1}^n w_k b_k \right)^p} . \quad (\text{gwR})$$

Proof

Using the *generalized Radon inequality* (see for example [5], [6]),

$$\sum_{k=1}^n \frac{a_k^r}{b_k^p} \geq \frac{1}{n_k^{r-p-1}} \cdot \frac{\left(\sum_{k=1}^n a_k \right)^r}{\left(\sum_{k=1}^n b_k \right)^p} , \quad (\text{gR})$$

we have very simply:

$$\sum_{k=1}^n w_k^{r-p} \cdot \frac{a_k^r}{b_k^p} = \sum_{k=1}^n \frac{w_k^r a_k^r}{w_k^p b_k^p} = \sum_{k=1}^n \frac{(w_k a_k)^r}{(w_k b_k)^p} \stackrel{(gR)}{\geq} \frac{1}{n_k^{r-p-1}} \cdot \frac{\left(\sum_{k=1}^n w_k a_k \right)^r}{\left(\sum_{k=1}^n w_k b_k \right)^p}.$$

If in **(gwR)** we take $r = p+1$, we obtain the *weighted Radon inequality* .

Between *Radon's unweighted* and *Radon's weighted inequalities* , we would be inclined to believe that the *weighted* one is more general . In fact, the two versions are equivalent, as shown by the following :

7. Proposition

(Unweighted) Radon's inequality (R) and **weighted Radon's inequality (wR)** they are equivalent inequalities .

Proof

Regarding the *Proposition 1* , in *Proof 1* , we practically proved the implication :

Radon's inequality (R) \Rightarrow weighted Radon's inequality (wR) .

The other implication ,

weighted Radon's inequality (wR) \Rightarrow Radon's inequality (R) ,

it is obtained by simply considering the equality of weights $w_1 = w_2 = \dots = w_n$ in inequality **(wR)** .

In the same manner , the following equivalence takes place :

8. Proposition

The **weighted Hölder inequality (wH)** and **weighted Radon's inequality (wR)** are equivalent inequalities .

Proof

In *Proof 2* from *Proposition 1* we practically proved the implication :

weighted Hölder inequality, (wH) \Rightarrow weighted Radon's inequality (wR) .

The other implication ,

weighted Radon's inequality (wR) \Rightarrow weighted Hölder inequality (wH) ,

we will demonstrate it as follows. In ***weighted Radon's inequality***, written in the

form , $\sum_{k=1}^n w_k \cdot \frac{a_k^p}{b_k^{p-1}} \geq \frac{\left(\sum_{k=1}^n w_k \cdot a_k \right)^p}{\left(\sum_{k=1}^n w_k \cdot b_k \right)^{p-1}}$, $p > 1$, we replace :

$$a_k \rightarrow x_k y_k \text{ , } b_k \rightarrow y_k^{\frac{p}{p-1}} = y_k^q \text{ , } k \in \{1, 2, \dots, n\} \text{ , and we get :}$$

$$\begin{aligned} \sum_{k=1}^n w_k \cdot \frac{(x_k y_k)^p}{\left(y_k^{\frac{p}{p-1}} \right)^{p-1}} \geq \frac{\left(\sum_{k=1}^n w_k x_k y_k \right)^p}{\left(\sum_{k=1}^n w_k y_k^{\frac{p}{p-1}} \right)^{p-1}} &\Leftrightarrow \sum_{k=1}^n w_k x_k^p \geq \frac{\left(\sum_{k=1}^n w_k x_k y_k \right)^p}{\left(\sum_{k=1}^n w_k y_k^q \right)^{p-1}} \Leftrightarrow \\ &\Leftrightarrow \left(\sum_{k=1}^n w_k x_k^p \right) \left(\sum_{k=1}^n w_k y_k^q \right)^{p-1} \geq \left(\sum_{k=1}^n w_k x_k y_k \right)^p \Leftrightarrow \left(\sum_{k=1}^n w_k x_k^p \right)^{\frac{1}{p}} \left(\sum_{k=1}^n w_k y_k^q \right)^{\frac{p-1}{p}} \geq \sum_{k=1}^n w_k x_k y_k \Leftrightarrow \\ &\Leftrightarrow \left(\sum_{k=1}^n w_k x_k^p \right)^{\frac{1}{p}} \left(\sum_{k=1}^n w_k y_k^q \right)^{\frac{1}{q}} \geq \sum_{k=1}^n w_k x_k y_k . \end{aligned}$$

mean exactly the ***weighted Holder inequality*** .

In [6] , ***Radon's (unweighted) inequality*** was equivalently described in terms of means .

Thus, if we denote ,

$$A_n(a_1, a_2, \dots, a_n) := \frac{a_1 + a_2 + \dots + a_n}{n} , \text{ (arithmetic mean)} \quad (4)$$

then the *inequality (R)* – from the beginning of this work is thus transposed :

(Radon's inequality in the language of arithmetic means)

- if $n \in \mathbb{N}^*$, $a_i \geq 0$ 0 , $b_i > 0$, $(\forall) i = \overline{1, n}$, $p \geq 0$, then ,

$$A_n \left(\frac{a_1^{p+1}}{b_1^p}, \frac{a_2^{p+1}}{b_2^p}, \dots, \frac{a_n^{p+1}}{b_n^p} \right) \geq \frac{A_n^{p+1}(a_1, a_2, \dots, a_n)}{A_n^p(b_1, b_2, \dots, b_n)} , \quad (\text{Rma})$$

with equality if and only if $\frac{a_1}{b_1} = \frac{a_2}{b_2} = \dots = \frac{a_n}{b_n}$.

Also the *generalized weighted Radon inequality* - **(gwR)** , can be written equivalently in the language of *arithmetic means* , as follows :

9. Corollary (generalized weighted Radon's inequality in language of means)

For $n \in \mathbb{N}^*$, $p > 0$, $r \geq p+1$, $a_1, a_2, \dots, a_n \geq 0$, $b_1, b_2, \dots, b_n > 0$, and for any $w_1, w_2, \dots, w_n > 0$, then holds the inequality ,

$$A_n \left(w_1^{r-p} \cdot \frac{a_1^r}{b_1^p}, \dots, w_n^{r-p} \cdot \frac{a_n^r}{b_n^p} \right) \geq \frac{A_n^r(w_1 \cdot a_1, \dots, w_n \cdot a_n)}{A_n^p(w_1 \cdot b_1, \dots, w_n \cdot b_n)} . \quad (\text{gwRm})$$

Proof

Indeed , we have the equivalents :

$$\begin{aligned} \sum_{k=1}^n w_k^{r-p} \cdot \frac{a_k^r}{b_k^p} \geq \frac{1}{n_k^{r-p-1}} \cdot \frac{\left(\sum_{k=1}^n w_k a_k \right)}{\left(\sum_{k=1}^n w_k b_k \right)^p} &\Leftrightarrow \\ \Leftrightarrow \frac{1}{n} \cdot \sum_{k=1}^n w_k^{r-p} \cdot \frac{a_k^r}{b_k^p} &\geq \frac{\left(\frac{1}{n} \cdot \sum_{k=1}^n w_k \cdot a_k \right)^r}{\left(\frac{1}{n} \cdot \sum_{k=1}^n w_k \cdot b_k \right)^p} \Leftrightarrow \\ \Leftrightarrow \frac{1}{n} \cdot A_n \left(w_1^{r-p} \cdot \frac{a_1^r}{b_1^p}, \dots, w_n^{r-p} \cdot \frac{a_n^r}{b_n^p} \right) &\geq \frac{A_n^r(w_1 \cdot a_1, \dots, w_n \cdot a_n)}{A_n^p(w_1 \cdot b_1, \dots, w_n \cdot b_n)} . \end{aligned}$$

And here, if we consider the *weighted arithmetic mean* ,

$$A_n(a_1, a_2, \dots, a_n; w_1, w_2, \dots, w_n) := w_1 a_1 + w_2 a_2 + \dots + w_n a_n , \quad (5)$$

then *weighted Radon's inequality* , (wB) - will be transcribed in the language of *weighted arithmetic means* as follows :

$$A_n \left(\frac{a_1^{p+1}}{b_1^p}, \frac{a_2^{p+1}}{b_2^p}, \dots, \frac{a_n^{p+1}}{b_n^p}; w_1, w_2, \dots, w_n \right) \geq \frac{A_n^{p+1}(a_1, a_2, \dots, a_n; w_1, w_2, \dots, w_n)}{A_n^p(b_1, b_2, \dots, b_n; w_1, w_2, \dots, w_n)} . \quad (\text{wRma})$$

References :

- [1] Bătinețu-Giurgiu, D.M. , Mărghidanu D. , Pop T. O. , “*A generalization of Radon’s inequality*” , in *Creative Math. & Inf.* ” **20** , No. 2 , pp. 111 – 116 , **2011** .
- [2] Bătinețu-Giurgiu, D.M., Mărghidanu D. , Pop T. O. , “*A refinement of a Radon type inequality*” , *Creative Math. & Inf.* **27** , No. 2 , pp. 115-122 **2018** .
DOI: 10.37193/cmi.2018.02.03
- [3] Bogomolny A. , “*Radon’s Inequality and Applications*” , in «*Cut-The-Knot* » , *on-line* , <https://www.cut-the-knot.org/m/Algebra/RadonInequality.shtml>
- [4] Bogomolny A. , “*Dorin Marghidanu’s Example for Radon’s Inequality*” , in «*Cut-The-Knot* » , *on-line* , <https://www.cut-the-knot.org/m/Algebra/MarghidanuExampleRadon.shtml>
- [5] Mărghidanu D. , “*Generalizations and refinements for Bergström and Radon’s Inequalities*” , in ”*JOURNAL of SCIENCES and ARTS* ” , Year **8** , No. 1 (8) , pp. 57-62 , **2008** , *on-line* , http://www.icstm.ro/DOCS/josa/josa_2008_1/cuprins.htm
- [6] Mărghidanu D. , “*Inegalitățile lui Bergström și Radon – în limbaj de medii aritmetice*” , in «*REVISTA DE MATEMATICA DIN TIMISOARA* », anul **XXIX** (Seria a IV-a) , pp. 5-8 , nr. **4/2024** .
- [7] Marghidanu D. , “*Weighted Bergström’s inequality*” , in «*Romanian Mathematical Magazine* » , **January 8 , 2026** , *on-line* : <http://www.ssmrmh.ro/wp-content/uploads/2026/01/WEIGHTED-BERGSTROMS-INEQUALITY.pdf>
- [8] Marghidanu D. , *Proposed problem* , *Mathematical Inequalities-Pascal Academy* , **12 January, 2026** , <https://www.facebook.com/photo?fbid=26112844715014623&set=gm.4303189983302363&id=1486244404996949>
- [9] Radon, J. , “*Theorie und Anwendungen der absolut additiven Mengenfunktionen*” , *Sitzungsber. Acad. Wissen. Wien* **122** (1913) , 1295{1438