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                         In this work , a weighted version of Bergström's inequality is presented .  
                      Equivalents of this inequality with the unweighted Bergström inequality  
                      and with the weighted C-B-S inequality have also stated and proved  . 
                     Also various consequences of this inequality are also exposed . 
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            It is known in mathematical practice and in mathematical literature the Bergström's    
         famous and beautiful inequality , discovered in 1949 and published in 1952  , [3] :        

                     For any   x1  , x2  , . . . , xn   ;  a1  , a2  , . . . , an > 0   
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              For this interesting inequality there are many more proofs, extensions,    
          generalizations and various refinements, see for example : [1] , [2] , [5]-[7] , [10] .       
              In what follows, we are interested in obtaining a weighted version of    
          Bergström's inequality  (B) . 
. 

                We will thus have the following statement , 
                                       

                  1. Proposition  ( weighted Bergström's  inequality ) , [11] 
 

                   For any  x1  , x2  , . . . , xn  ;  a1  , a2  , . . . , an > 0  and for any  w1  , w2  , . . . , wn > 0  ,    

             holds the inequality , 
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   Proof 1  ( by applying  unweighted– Bergström's inequality ) 
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    Proof 2    ( by applying  weighted CBS inequality ) 
 

        In the weighted CBS inequality ,   
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                   Proof 3    ( by applying  weighted Jensen inequality ) 
                
 

       if   f : ℝ   ℝ   is a convex function , then for any  weights 0k  ,   

    , , ,  1  2    { }k n , for which we have 
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                with equality if and only if   x1 = x2 = . . . = xn  . 
 
 
 



 

                 With the convex function  f : ℝ   ℝ  , ,   by substitutions :2( ) =f x x
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we will have successively :
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        2. Remark 
 
 

       If in  ( w B)  from Proposition 1, we take    w1  = w2  = . . . = wn  , we obtain the    
  (B)  - the unweighted version of   Bergström  inequality . 
 

      3. Corollary   
 

                 For any  x1  , x2  , . . . , xn  ; a1  , a2  , . . . , an > 0  , holds the inequality , 
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Proof       

               In the inequality ( w B )  we take the weights , wk = k  , , , , ,  1  2    { }k n    
            and the inequality from the statement is obtained . 
 



 
 

               4. Corollary  , [12]  
  

                 For real numbers a1  > a2  > . . . > an  > an+1 ≥ 0 , holds the inequality , 
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Proof 

        After a light preparation and then, by applying  weighted Bergström's    

  inequality , we have :  
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               5. Corollary   ( weighted Nesbitt's inequality ) 
 
 

                 For any  a  , b  , c  > 0   and any weights  w1  , w2  , w3  > 0    holds the inequality , 
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             with equality if and only if   a  = b  = c  .               

                 Proof 
  

                We have, after a short preparation and then with the application of the inequality (w B ) :  
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             If we take  w1 = w2 = w3 , is obtained Nesbitt’s inequality (unweighted version) , [14].  

             
 

     6. Remark 
 

    Another weighted version of  Nesbitt's inequality  was presented in  [9] .  
    For other works regarding Nesbitt's inequality or its  extensions or refinements ,   
 see also: [8] , [13] . . 
 

    Between Bergström's unweighted and weighted inequalities , we would be    
 inclined to believe that the weighted one is more general . In fact, the two versions   
 are equivalent, as shown by the following : 

                              

     7. Corollary  , [4]  
 

              If  for  k = 1 , 2 . 3 ,  ak + k > 0  and  a1  + 2 a2  + 3 a3  ≤  4  , then  
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      Proof 
 

             Indeed , after a slight preparation and then with weighed Bergström's inequality , as  
         well as the inequality of condition , (c) :  a1 + 2 a2 + 3 a3  ≤ 4  , we get successively : 
 

                

 
         

1 2 3 1 2 3

1 2 3 1 2 3

2

1 2 3 1 1 1
1 2 3

2 3 2 3

(c)
1 1 2 1 3 1 36

1 2 2 3 3 2 3 1 4 9

(c)
36 36

2
4 14 18

+ + + + + +

+ +

+ + + + + + + + +

+ + + +
                                   

                   

       

  

  
     



           

                 

   

     

   

1 1

1

wB

a a a a a a

wB

a a a a a a





 



 

 

  ,   

                                         

                8. Proposition                    

    (Unweighted –) Bergström's inequality , ( B )  and weighted Bergström's   
 inequality  ( w B )   they are equivalent inequalities . .  
 

               Proof 
 

             Regarding the Proposition 1 , in Proof 1 ,  we practically proved the implication : 

                 Bergström's inequality ( B )     weighted Bergström's inequality ( w B ) . 

             



 
              The other implication ,   

       weighted Bergström's inequality ( w B )      Bergström's inequality ( B )  , 

it is obtained by simply considering the equality of weights  w1  = w2  = . . . = wn  in 
inequality  ( w B ) . 
 

   In the same manner , the following equivalence takes place : 
 

   9. Proposition                    

   The  weighted inequality,( w CBS )  and weighted Bergström's inequality  ( w B )  
are equivalent inequalities .             

 

               Proof 
 

             In Proof 2  from  Proposition 1   we practically proved the implication : 

                weighted inequality,( w CBS )    weighted Bergström's inequality ( w B ) . 

            The other implication ,     

                weighted Bergström's inequality ( w B )      weighted inequality,( w CBS )  , 

we will demonstrate it as follows .  
 

    In weighted Bergström's inequality ( w B ) , we replace :  
 

                  , , ,2 1 2,k k k k ka a x a b k     n       and we get :           

2 2
1 2 2

2
21 1 1 1

1

2

2
=

= = = =

=

,                

                                     


   



n

k k kn n n nkk k
k n k k k k k k k

k k k kk
k k

k

w a b
a b

w w a w b w a b
a w a

 

 

mean exactly the weighted CBS inequality .  
 

     
In [7] , Bergström's  (unweighted)  inequality was equivalently described in 

terms of means.  
     Thus, if we denote , 
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             And here, if we consider the weighted arithmetic mean ,  
 

           , , , ; , , ,1 2 1 2 1 1 2 2(   )… … …n n n n na a a w w w w a + w a + + w a  ,            (5)  
   

        then weighted Bergström's inequality , ( w B ) - will be transcribed in the language of   
         weighted  arithmetic means  as follows : 
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              Extensions and generalizations of Bergstrom's weighted inequality (such as Radon's   
        weighted inequality) will be studied and published in a separate , subsequent paper . 
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