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In this work , a weighted version of Bergstrom's inequality is presented .
Equivalents of this inequality with the unweighted Bergstrom inequality
and with the weighted C-B-S inequality have also stated and proved .
Also various consequences of this inequality are also exposed .
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It is known in mathematical practice and in mathematical literature — the Bergstrom's
famous and beautiful inequality , discovered in 1949 and published in 1952 , [3]:
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For this interesting inequality there are many more proofs, extensions,
generalizations and various refinements, see for example : [1],[2],[5]-[7],[10].
In what follows, we are interested in obtaining a weighted version of

Bergstrom's inequality (B) .
We will thus have the following statement ,
1. Proposition ( weighted Bergstrom's inequality ) , [11]
For any x1,x3,...,x, €R; ay,a,,...,a,>0 and for any wy;,wy,...,w,>0 ,
holds the inequality ,
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Proof 1 (by applying unweighted— Bergstrom's inequality)
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Proof2 ( by applying weighted CBS inequality )
In the weighted CBS inequality ,
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by substitutions: a, —\/a, . b, —xx/Ja, , k€ {1,2,,n} , we get:
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Proof3 (by applying weighted Jensen inequality )
e if f:R —> R isaconvex function, then for any weights 4, >0 ,

ke{l,2,.--,n}, for which we have > A, =1, then holds the weighted Jensen
k=1
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With the convex function f: R —— R, f(x) = x? , by substitutions :
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we will have successively :
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2. Remark

If in (wB) from Proposition 1, we take w; =w, =...=w, , we obtain the
(B) - the unweighted version of Bergstrom inequality .

3. Corollary

Forany x1,x3,...,x, €Rsay,a,,...,a,>0 ,holds the inequality ,
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Proof

In the inequality (wB) we take the weights , w, =k , ke {l,2,---,n},
and the inequality from the statement is obtained .



4. Corollary , [12]
For real numbers a; > a, >...>a, > a,s; 2 0, holds the inequality ,
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Proof
After a light preparation and then, by applying weighted Bergstrom's

inequality , we have :
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S. Corollary ( weighted Nesbitt's inequality )

Forany a,b,c >0 and any weights wy;, w,, w3 >0 holds the inequality ,
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Proof
We have, after a short preparation and then with the application of the inequality (wB) :
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If we take w;=w,=ws, is obtained Nesbitt’s inequality (unweighted version) , [14].
6. Remark

Another weighted version of Nesbitt's inequality was presented in [9] .
For other works regarding Nesbitt's inequality or its extensions or refinements ,

see also: [8], [13]..

Between Bergstrom's unweighted and weighted inequalities , we would be
inclined to believe that the weighted one is more general . In fact, the two versions
are equivalent, as shown by the following :

7. Corollary , [4]
If for k=1,2.3, a;,+k>0 and a; +2a, +3a3; < 4 ,then

1 + 2 + 3 > 2 . (3)
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Proof

Indeed , after a slight preparation and then with weighed Bergstrom's inequality , as
well as the inequality of condition, (¢) : a;+2 a,+3 a; <4 , we get successively :
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8. Proposition

(Unweighted —) Bergstrom's inequality , (B) and weighted Bergstrom's
inequality (wB) they are equivalent inequalities . .

Proof

Regarding the Proposition 1 , in Proof 1 , we practically proved the implication :

Bergstrom's inequality (B) —> weighted Bergstrom's inequality (wB) .



The other implication ,

weighted Bergstrom's inequality (wB) —> Bergstrom's inequality (B) ,

it is obtained by simply considering the equality of weights w; =w, =...=w, in
inequality (wB) .

In the same manner , the following equivalence takes place :

9. Proposition

The weighted inequality,(w CBS) and weighted Bergstrom's inequality (wB)
are equivalent inequalities .

Proof

In Proof2 from Proposition1 we practically proved the implication :
weighted inequality,(w CBS) —> weighted Bergstrom's inequality (wB) .
The other implication ,
weighted Bergstrom's inequality (wB) —> weighted inequality,(w CBS) ,
we will demonstrate it as follows .
In weighted Bergstrom's inequality (wB) , we replace :

a,—a; , x,—ab, , k€ {1,2,,n}, and we get :
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mean exactly the weighted CBS inequality .

In [7], Bergstrom's (unweighted) inequality was equivalently described in
terms of means.
Thus, if we denote ,

a,ta,t ... +a,

A, (ay,a,, ....a,):= . , (arithmetic mean) “4)

fhen the inequality (B) — from the beginning of this work is thus transposed :
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e if neN', x;eR,a;>0, (V)i=1n, then,
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And here, if we consider the weighted arithmetic mean ,
A (aj,ay, oo .a, ;W Wy, oo W)= wa, twya,t+ .o twea, 5)

then weighted Bergstrom's inequality , (wB) - will be transcribed in the language of
weighted arithmetic means as follows :

A{xf 6 X J>Af(xpxz,---,xn;wpwz,---,wn).

°c 7;WI,WZ, eoe = .
a, a, a, A(a,a, -, a,; W, W,, oo W,)

(wB ma)

1

Extensions and generalizations of Bergstrom's weighted inequality (such as Radon's
weighted inequality) will be studied and published in a separate , subsequent paper .
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