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𝐀𝐬𝐬𝐢𝐠𝐧𝐢𝐧𝐠 𝐲 + 𝐳 = 𝒂, 𝐳 + 𝒙 = 𝐛, 𝒙 + 𝐲 = 𝐜 ⇒ 𝒂 + 𝐛 − 𝐜 = 𝟐𝐳 > 𝟎, 𝒃 + 𝒄 − 𝒂 = 𝟐𝒙 
> 𝟎 𝒂𝐧𝐝 𝐜 + 𝒂 − 𝐛 = 𝟐𝐲 > 𝟎 ⇒ 𝒂 + 𝐛 > 𝒄, 𝐛 + 𝐜 > 𝒂, 𝐜 + 𝒂 > 𝒃 ⇒ 𝒂, 𝐛, 𝐜 𝐟𝐨𝐫𝐦   

𝐬𝐢𝐝𝐞𝐬 𝐨𝐟 𝒂 𝐭𝐫𝐢𝒂𝐧𝐠𝐥𝐞 𝐰𝐢𝐭𝐡 𝐬𝐞𝐦𝐢𝐩𝐞𝐫𝐢𝐦𝐞𝐭𝐞𝐫, 𝐜𝐢𝐫𝐜𝐮𝐦𝐫𝒂𝐝𝐢𝐮𝐬 𝒂𝐧𝐝 𝐢𝐧𝐫𝒂𝐝𝐢𝐮𝐬 = 𝐬, 𝐑, 𝐫 (𝐬𝒂𝐲) 
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= 𝟒𝐑𝐫 + 𝐫𝟐 𝒂𝐧𝐝 ∑ 𝒙𝟐
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= 𝐬𝟐 − 𝟖𝐑𝐫 − 𝟐𝐫𝟐 ⇒ (∗) ⇔ 

𝐬𝟐(𝐬(𝟒𝐑𝐫 + 𝐫𝟐) − 𝟗𝐫𝟐𝐬) ≥
?

𝟑𝐫𝟐𝐬(𝟑(𝐬𝟐 − 𝟖𝐑𝐫 − 𝟐𝐫𝟐) − 𝐬𝟐) 
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𝟎 𝒂𝐧𝐝 𝐢𝐭′𝐬 𝐭𝐫𝐢𝐯𝐢𝒂𝒍𝒍𝐲 𝐭𝐫𝐮𝐞 𝐰𝐡𝐞𝐧 ∶ 𝟐𝐑 − 𝟕𝐫 ≥ 𝟎 

𝒂𝐧𝐝 𝐰𝐡𝐞𝐧 ∶ 𝟐𝐑 − 𝟕𝐫 < 𝟎, 𝒕𝒉𝒆𝒏 ∶ 𝑳𝑯𝑺 𝒐𝒇 (∗∗) ≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

 
(𝟐𝐑 − 𝟕𝐫)(𝟒𝐑𝟐 + 𝟒𝐑𝐫 + 𝟑𝐫𝟐) + 𝟗𝐫𝟐(𝟒𝐑 + 𝐫) = 𝟐(𝐑 − 𝟐𝐫)(𝟒𝐑𝟐 − 𝟐𝐑𝐫 + 𝟑𝐫𝟐) ≥ 𝟎 
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∀ 𝒙, 𝐲, 𝐳 > 𝟎│𝒙 + 𝐲 + 𝐳 = 𝟑 ∧  𝛌 ≥ 𝟑, ′′ =′′  𝐢𝐟𝐟 𝒙 = 𝐲 = 𝐳 = 𝟏 (𝐐𝐄𝐃) 
 


