

Number 40

SPRING 2026

R M M

ROMANIAN MATHEMATICAL MAGAZINE

Founding Editor
DANIEL SITARU

Available online
www.ssmrmh.ro

ISSN-L 2501-0099

ROMANIAN MATHEMATICAL MAGAZINE

PROBLEMS FOR JUNIORS

JP.586. If a, b, c are sides of acute ΔABC and

$$\frac{2}{a^2 + c^2 - b^2} = \frac{1}{b^2 + c^2 - a^2} + \frac{1}{c^2 + a^2 - b^2}$$

then: $\tan^2 B \geq \tan A \cdot \tan C$

Proposed by Daniel Sitaru - Romania

JP.587. If $x, y \geq 1$ then:

$$\ln(xy) \cdot (2 \ln(xy) + 1) \geq 4(\ln x \sqrt{\ln y} + \ln y \sqrt{\ln x})$$

Proposed by Daniel Sitaru - Romania

JP.588. If $a, b, c, d > 0, abcd = 1$ then:

$$a^{b+c+d} b^{c+d+a} c^{d+a+b} d^{a+b+c} \leq 1$$

Proposed by Marin Chirciu - Romania

JP.589. If $a, b, c \leq 0$ and $1 < \lambda \leq 2$ then:

$$\sum \frac{a(b+c)^2}{\lambda a + b + c} \leq \frac{a^2 + b^2 + c^2}{\lambda - 1}$$

Proposed by Marin Chirciu - Romania

JP.590. If $a, b, c > 0$ then:

$$\sum \frac{(b+c)^2}{2a^3 + bc(b+c)} \leq \frac{1}{a} + \frac{1}{b} + \frac{1}{c}$$

Proposed by Marin Chirciu - Romania

JP.591. If $x, y, z > 0, x + y + z = 1$ and $\lambda \geq 26$ then:

$$x^4 + y^4 + z^4 + \lambda xyz \leq \frac{\lambda + 1}{27}$$

Proposed by Marin Chirciu - Romania

JP.592. Solve for real numbers:

$$\begin{cases} 2^x + 3^y + 5^z = 10 \\ \left| \sqrt{x^2 + y^2 + z^2} - \sqrt{\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2}} \right| = \left| x - \frac{1}{x} \right| + \left| y - \frac{1}{y} \right| + \left| z - \frac{1}{z} \right| \end{cases}$$

Proposed by Daniel Sitaru - Romania

JP.593. Solve for real numbers:

$$\frac{x^2}{x^2 + 4\sqrt{x} + 2} + \frac{2}{2 + x\sqrt{x+2}} = \frac{4x}{5x+2}$$

Proposed by Daniel Sitaru - Romania

JP.594. Solve for real numbers:

$$\sin^{2022} x \cdot \cos^{2024} x = \frac{1}{2^{2022}}$$

Proposed by Daniel Sitaru - Romania

JP.595. Find $x, y, z > 1$ such that:

$$\sum_{cyc} \frac{\log_2 x}{\log_2^6 x + \log_2^3 y + \log_2^3 z} = \frac{1}{27} \left(\sum_{cyc} \log_2 x \right)^3$$

Proposed by Daniel Sitaru - Romania

JP.596. In acute ΔABC , AA' , BB' , CC' - are altitudes, $C' \in (AB)$, $B' \in (AC)$, $\{H\} = BB' \cap CC'$ and E, F are middle points of $[BH], [AC]$ respectively. Prove that:

$$4EF^2 \geq (EC' + EB')^2 + (C'F + B'F)^2$$

Proposed by Marian Ursărescu, Florică Anastase - Romania

JP.597. Let $ABCD$ be an convex quadrilateral, $\lambda \in \mathbb{R}$ and M, N be such that

$$\vec{AN} = \lambda \cdot \vec{AB}, \vec{DN} = \lambda \cdot \vec{DC}, \vec{AD} = 3 \cdot \vec{BC}$$

Find $\lambda \in \mathbb{R}$ such that $\vec{MN} = 7 \cdot \vec{BC}$

Proposed by Marian Ursărescu, Florică Anastase - Romania

JP.598. Let $n \geq 4$, and let a_1, a_2, \dots, a_n be nonnegative real numbers such that $a_1 \geq a_2 \geq \dots \geq a_n$ and $a_1 a_2 + a_2 a_3 + \dots + a_n a_1 = n$. Prove that:

$$\frac{1}{2a_1 + 5} + \frac{1}{2a_2 + 5} + \dots + \frac{1}{2a_n + 5} \geq \frac{n}{7}$$

Proposed by Vasile Cîrtoaje - Romania

JP.599. Prove that 3 is the largest positive value of the power k such that the inequality

$$\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} \geq a_1^k + a_2^k + \dots + a_n^k$$

holds for $n \geq 2$ and any positive real numbers a_1, a_2, \dots, a_n with at most one $a_i < 1$ and $a_1^2 + a_2^2 + \dots + a_n^2 = n$.

Proposed by Vasile Cîrtoaje - Romania

JP.600. Calculate the limit of sequence $(a_n)_{n \geq 1}$ defined by the following relationship:

$$a_n = \frac{1}{n} \int_0^{\frac{1}{2}} \ln(1 + e^{n \cdot \arcsin x}) dx$$

Proposed by Vasile Mircea Popa - Romania

PROBLEMS FOR SENIORS

SP.586. Solve for real numbers:

$$\begin{cases} (\sqrt{x+y} - \sqrt{x})(\sqrt{x^2 + xy} + 1) = xy \\ x + y + z = 3 \\ (\sqrt{y+z} - \sqrt{y})(\sqrt{y^2 + yz} + 1) = xy \end{cases}$$

Proposed by Daniel Sitaru - Romania

SP.587. Let a, b, c be sides in ΔABC . If $\tan B = 2$; $\tan C = 3$ then:

$$a^2 + b^2 + c^2 > \frac{2F}{3}(3\sqrt{2} + 3\sqrt{5} + 2\sqrt{10} - 11)$$

Proposed by Daniel Sitaru - Romania

SP.588. For given $n \geq 3$, prove that 2 is the least positive value of k such that:

$$\frac{1}{ka_1 + 1} + \frac{1}{ka_2 + 1} + \dots + \frac{1}{ka_n + 1} \geq \frac{n}{k+1}$$

for any positive real numbers a_i with at most two $a_i > 1$ and $a_1 a_2 \dots a_n = 1$

Proposed by Vasile Cîrtoaje - Romania

SP.589. Prove that 4 is the largest positive value of k such that the inequality

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \geq a^k + b^k + c^k$$

holds for any positive real numbers a, b, c with at most one of them less than 1 and

$$a + b = c = a^2 + b^2 + c^2$$

Proposed by Vasile Cîrtoaje - Romania

SP.590. Solve the following system in integers $(x, y, z) \in \mathbb{N}^* \times \mathbb{N}^* \times \mathbb{Z}$

$$\begin{cases} x^3 - y^2 + 2z = 0 \\ x^2 + y^2 + z^2 = 179 \end{cases}$$

Proposed by Said Attaoui - Algeria

SP.591. If $a, b, c > 0$, $a^8 + b^8 + c^8 \leq 768$ then:

$$\sum \frac{1}{\sqrt[4]{4+a^5}} \geq \frac{1}{2}$$

Proposed by Marin Chirciu - Romania

SP.592. If $a, b, c > 0$ and $n \in \mathbb{N}, n \geq 2$ then:

$$\sum a \sqrt[n]{b^n + c^n} \geq \sqrt[n]{2}(ab + bc + ca)$$

Proposed by Marin Chirciu - Romania

SP.593. Solve for real numbers:

$$(\sin x + \cos y)^2 = (\sin x + 1)(\cos y - 1)$$

Proposed by Daniel Sitaru - Romania

SP.594. Find $x, y > 0$ such that:

$$\ln^2(xy) = \ln(xe) \cdot \left(\ln \frac{y}{e} \right)$$

Proposed by Daniel Sitaru - Romania

SP.595. Solve for real numbers:

$$\tan 2x + \tan 3x + \tan 5x = \tan 2x \cdot \tan 3x \cdot \tan 5x$$

Proposed by Daniel Sitaru - Romania

SP.596. Solve for real numbers:

$$\begin{cases} \sin^2 x = \frac{1}{2} + \sin^2(y - z) \\ \sin^2 y = \frac{1}{3} + \sin^2(z - x) \\ \sin^2 z = \frac{1}{6} + \sin^2(x - y) \end{cases}$$

Proposed by Daniel Sitaru - Romania

SP.597. Let a, b, c, d be positive real numbers with $\sum a \geq \sum \frac{1}{a}$.
Prove that:

$$\sum \frac{a+b+c-d}{a^4+b^4+c^4+abcd} \leq \frac{4}{3} \left(\frac{ab+ac+ad+bc+bd+cd}{abc+abd+acd+bcd} \right)$$

Proposed by Huseyin Yigit Emekci - Turkey

SP.598. Let x, y, z be positive real numbers. Prove that:

$$\frac{x^3 + 9xy^2}{z^3 + x^2y} + \frac{y^3 + 9yz^2}{x^3 + y^2z} + \frac{z^3 + 9zx^2}{y^3 + z^2x} \geq 3 + \frac{12xyz(x+y+z)}{x^3y + y^3z + z^3x}$$

Proposed by Huseyin Yigit Emekci - Turkey

SP.599. We consider the function $f : D \rightarrow \mathbb{R}$

$$f(x) = x \int_x^{x+\frac{3}{x}} t \arcsin\left(\frac{1}{t}\right) dt$$

where D is the maximal domain of the function.

- Find the domain D
- Show that the function $f(x)$ is even
- Calculate $\lim_{x \rightarrow -\infty} f(x)$

Proposed by Vasile Mircea Popa - Romania

SP.600. Let a, b, c, d, e, f, g be real numbers such that

$a \geq b \geq c \geq d \geq e \geq f \geq g$ and $a + b + c + d + e + f + g = 0$.

Prove that:

$$a^2 + b^2 + c^2 + d^2 + e^2 + f^2 + g^2 \geq 2(ab + bc + cd + de + ef + fg + ga)$$

Proposed by Vasile Cîrtoaje - Romania

UNDERGRADUATE PROBLEMS

UP.586. If $A \in M_{2,1}(\mathbb{R})$; $B \in M_{1,2}(\mathbb{R})$; $A \cdot B = \begin{pmatrix} 0 & 0 \\ 8 & 1 \end{pmatrix}$ then find $B \cdot A$.

Proposed by Daniel Sitaru - Romania

UP.587. Let a, b, c be positive real numbers such that at most one of them is less than 1 and $ab + bc + ca = 3$. Prove that:

$$abc(a + b + c)^3 \leq 27$$

Proposed by Vasile Cîrtoaje - Romania

UP.588. If $a \geq 0$ then:

$$15 \left(\int_0^a \frac{x}{e^x} dx \cdot \int_0^a \frac{x^2}{e^x} dx \cdot \int_0^a \frac{x^3}{e^x} dx \right)^2 \leq a^9 \left(\int_0^a \frac{x^2}{e^{2x}} dx \right)^3$$

Proposed by Daniel Sitaru - Romania

UP.589. If $X, Y, Z \in M_4(\mathbb{C})$ are matrices such that:

$$\begin{cases} X = 2Y + Z \\ X^2 = 4Y + 4Z \\ X^3 = 8Y + 12Z \end{cases} \quad \text{then: } X^{2024} = 2^{2024} \cdot Y + 2024 \cdot 2^{2023} \cdot Z$$

Proposed by Daniel Sitaru - Romania

UP.590. If $A, B \in M_4(\mathbb{R})$; $A \cdot B = B \cdot A$ then:

$$\det(A^4 + B^4 + AB(A^2 + AB + B^2)) \geq 0$$

Proposed by Daniel Sitaru - Romania

UP.591. Find:

$$\Omega = \lim_{n \rightarrow \infty} \frac{1}{3^n} \sum_{k=0}^{n-1} \sqrt{\binom{n}{k} \binom{n}{k+1}}$$

Proposed by Daniel Sitaru - Romania

UP.592. Solve for real numbers:

$$\begin{cases} \cos x + \cos y + \cos z = 1 \\ \cos^2 x + \cos^2 y + \cos^2 z = 1 \\ \cos^3 x + \cos^3 y + \cos^3 z = 1 \end{cases}$$

Proposed by Daniel Sitaru - Romania

UP.593. For $b \geq a$, prove that:

$$\int_a^b \frac{(x+1)^3 - 3x}{e^{x^3}} dx \leq b - a + \ln\left(\frac{b^3 + 1}{a^3 + 1}\right)$$

with equality if and only if $a = b$.

Proposed by Huseyin Yigit Emekci – Turkey

UP.594. Solve the system:

$$\begin{cases} x - 2y + z + 2 = k^2, \text{ with } 3 < k < 11 \\ x^2 + y^2 + z^2 = 109659 \\ -x^4 + y^2 + z^2 = 80929 \\ 3 < x < y < z, \quad x, y, z \in \mathbb{N} \end{cases}$$

Proposed by Said Attaoui – Algeria

UP.595. We consider the function $u : \mathbb{R} \rightarrow \mathbb{R}$, periodic with period 2π . For the period $[0, 2\pi]$ we have: $u(x) = 0$ if $x \in [0, \frac{\pi}{2})$; $u(x) = -\cos(x)$ if $x \in [\frac{\pi}{2}, \frac{3\pi}{2})$; $u(x) = 0$ if $x \in [\frac{3\pi}{2}, 2\pi)$. Prove the equality:

$$\int_0^\infty \frac{u(x)}{1+x^2} dx = \frac{\pi}{4e} + \frac{e^2+1}{2e} \arctan\left(\frac{1}{e}\right)$$

Proposed by Vasile Mircea Popa - Romania

UP.596. If $x > 0, y > 0, z > 0$ prove that there exists $u > 0$ such as

$$\frac{\sin x \sin y + \sin y \sin z + \sin z \sin x}{xy + yz + zx} = \frac{\sin u}{u}$$

Proposed by Cristian Miu - Romania

UP.597. Find the following limit:

$$L = \lim_{n \rightarrow \infty} \left(\frac{1}{2^n} \cdot \lim x \rightarrow \frac{\pi}{n} \left(\sum_{k=0}^n \binom{n}{k} \sin(k+1)x \right) \right)$$

Proposed by Marian Ursărescu, Florică Anastase - Romania

UP.598. Find the following limit:

$$L = \lim_{x \rightarrow 0} \left(\frac{1}{x} \cdot \lim_{n \rightarrow \infty} \sum_{k=1}^n 3^{k-1} \sin^3 \frac{x}{3^k} \right), a \in \mathbb{R}$$

Proposed by Marian Ursărescu, Florică Anastase - Romania

UP.599. Calculate the integral:

$$\int_{-\pi}^{\pi} \frac{\operatorname{arccot}(x)}{\sqrt{3 - \cos(x)}} dx$$

In this problem we will consider the definition of the function $\operatorname{arccot}(x)$ which has the image the interval $(0, \pi)$.

Proposed by Vasile Mircea Popa - Romania

UP.600. If $0 < a \leq b$ then:

$$a^3 + 3 \int_a^b \sinh x \cdot \operatorname{arcsinh} x dx \geq b^3$$

Proposed by Daniel Sitaru - Romania

MATHEMATICS DEPARTMENT, "THEODOR COSTESCU" NATIONAL ECONOMIC, COLLEGE DROBETA TURNU - SEVERIN, ROMANIA