

Supraarithmetic means , subharmonic means

Dorin Marghidanu
d.marghidanu@gmail.com

In this article, *supraarithmetic* and *subharmonic means* are introduced and studied. Some examples of such *means* are analyzed. The correlations between these types of means and the *mean's conjugation operator* are also highlighted, as well as the *refinement* relation that is established using these *means*.

Keywords : classical means , supraarithmetic means , subharmonic means , conjugate means , refinement , Hermite-Hadamard inequality , Jensen's inequality

Mathematics Subject Classification : 26D15

We recall that a **(*n*-ary mean)** in a set $S \subset \mathbb{R}$ is a function $M : S^n \longrightarrow S$, with the property of **internality** :

$$\min\{a_1, a_2, \dots, a_n\} \leq M(a_1, a_2, \dots, a_n) \leq \max\{a_1, a_2, \dots, a_n\}, \quad (1)$$

(\forall) $a_1, a_2, \dots, a_n \in S$.

In general, for the numbers $a_1, a_2, \dots, a_n > 0$, $n \in \mathbb{N}^*$ we will denote and define their *classical means* , as follows , [1] :

$$A_n(a_1, a_2, \dots, a_n) := \frac{a_1 + a_2 + \dots + a_n}{n} , \quad (\text{arithmetic mean}) \quad (2)$$

$$G_n(a_1, a_2, \dots, a_n) := \sqrt[n]{a_1 \cdot a_2 \cdot \dots \cdot a_n} , \quad (\text{geometric mean}) \quad (3)$$

$$H_n(a_1, a_2, \dots, a_n) := \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} , \quad (\text{harmonic mean}) . \quad (4)$$

Obviously there are numerous other *means* , theoretically - infinitely many. Among them, we will be interested here (and we will introduce them in the following) in two categories of *means* , namely *supraarithmetic means* and *subharmonic means* :

1. Definition

Let the numbers $a_1, a_2, \dots, a_n \in S \subset \mathbb{R}$, $n \in \mathbb{N}^*$.

A *mean* $M(a_1, a_2, \dots, a_n)$ is called *supraarithmetic mean* if ,

$$M(a_1, a_2, \dots, a_n) \geq A_n(a_1, a_2, \dots, a_n) . \quad (5)$$

A *mean* $N(a_1, a_2, \dots, a_n)$ it is called *subharmonic mean* if,

$$\mathcal{N}(a_1, a_2, \dots, a_n) \leq H_n(a_1, a_2, \dots, a_n) . \quad (6)$$

2. Remark

When there is no possibility of confusion regarding the numbers a_1, a_2, \dots, a_n , then relations (5) and (6) are written in simplified form: $\mathcal{M} \geq A_n$, $\mathcal{N} \leq H_n$.

Furthermore, if we also note : $m := \min\{a_1, a_2, \dots, a_n\}$, $M := \max\{a_1, a_2, \dots, a_n\}$, then we can express the relations from the previous definition in the language of membership to intervals :

$$\mathcal{M} \text{ is the } \textit{supraarithmetic mean} \text{ if, } \mathcal{M} \in [A_n, M] \quad (7)$$

$$\mathcal{N} \text{ is the } \textit{subharmonic mean} \text{ if, } \mathcal{N} \in [m, H_n] \quad (8)$$

Characteristic to many types of means are the properties (see e.g.: [1], [4], [5]) :

- *of symmetry* : if $M(a, b) = M(b, a)$, $(\forall) a, b \in S$;
- *of homogeneity* : if $M(k a, k b) = k M(b, a)$, $(\forall) a, b \in S$, $k \in \mathbb{R}_{>0}$.

3. Remember

If \mathbf{M} and \mathbf{N} there are two *binary means*, we say that \mathbf{M} and \mathbf{N} are *inverse* (with respect to \mathbf{G}) if $\mathbf{M} \cdot \mathbf{N} = \mathbf{G}^2$, and we will say that \mathbf{N} is the *inverse* of \mathbf{M} and we will write $\mathbf{N} = {}^i \mathbf{M}$.

Of course, as well, \mathbf{M} is the *inverse* of \mathbf{N} , too and ${}^i({}^i \mathbf{M}) = \mathbf{M}$.

The notion of *inverse mean* was introduced by *Corrado Gini*, in [1]. See also [4], [5], [8].

For example - for *classical means*, the *arithmetic mean* and the *harmonic mean* are *inverse means* : ${}^i \mathbf{A} = \mathbf{H}$, ${}^i \mathbf{H} = \mathbf{A}$, as can be easily observed. The *geometric mean* is its own *inverse*, ${}^i \mathbf{G} = \mathbf{G}$. In [7], the notion of *conjugation* was also introduced .

4. Definition

For the mean $\mathcal{M}(a_1, a_2, \dots, a_n)$ of numbers $a_1, a_2, \dots, a_n \in \mathbb{R}_{>0}$ we will call its *conjugate*, the expression denoted and defined as follows:

$${}^c \mathcal{M}(a_1, a_2, \dots, a_n) := 1 / \mathcal{M}[1/a_1, 1/a_2, \dots, 1/a_n] .$$

The expressions $\mathcal{M}(a_1, a_2, \dots, a_n)$ and ${}^c \mathcal{M}(a_1, a_2, \dots, a_n)$ will be called *conjugate expressions*.

Also, the *conjugation operator* is *involutive* : ${}^c({}^c \mathcal{M}) = \mathcal{M}$, as can be easily observed.

As well as *inverse means*, the *arithmetic mean* and the *harmonic mean* are *conjugate means* : ${}^c \mathbf{A} = \mathbf{H}$, ${}^c \mathbf{H} = \mathbf{A}$, as can be easily observed. The *geometric mean* is its own

There are situations when the *inversion* and *conjugation* operators are different, see for example in [4].

For what follows, the following is very important ,

5. Lemma

For the numbers $a_1, a_2, \dots, a_n \in \mathbb{R}_{>0}$, the following identities hold :

$$(a) \quad \frac{1}{\max(1/a_1, 1/a_2, \dots, 1/a_n)} = \min(a_1, a_2, \dots, a_n); \quad (9)$$

$$(b) \quad \frac{1}{\min(1/a_1, 1/a_2, \dots, 1/a_n)} = \max(a_1, a_2, \dots, a_n). \quad (10)$$

Proof

(a) We will prove by induction. For $n=2$, we have to prove that :

$$\frac{1}{\max(1/a_1, 1/a_2)} = \min(a_1, a_2). \quad (9')$$

Considering $a_1 \leq a_2$, the relation (9') becomes, $\frac{1}{1/a_1} = a_1$, obviously true.

We assume that $\frac{1}{\max(1/a_1, 1/a_2, \dots, 1/a_{n-1})} = \min(a_1, a_2, \dots, a_{n-1})$; and we will demonstrate that $\frac{1}{\max(1/a_1, 1/a_2, \dots, 1/a_n)} = \min(a_1, a_2, \dots, a_n)$. Indeed, we have:

$$\begin{aligned} \frac{1}{\max(1/a_1, 1/a_2, \dots, 1/a_n)} &= \frac{1}{\max((1/a_1, 1/a_2, \dots, 1/a_{n-1}), 1/a_n)} = \\ &= \min((a_1, a_2, \dots, a_{n-1}), a_n) = \min(a_1, a_2, \dots, a_n). \end{aligned}$$

(b) In a similar way.

With the following result, we have a characterization of *supraarithmetic* and *subharmonic means*.

6. Theorem

If $a_1, a_2, \dots, a_n \in \mathbb{R}_{>0}$, then occurs the statement:

$\mathcal{M}(a_1, a_2, \dots, a_n)$ is a *supraarithmetic mean* if and only if ${}^c\mathcal{M}(a_1, a_2, \dots, a_n)$ is the *subharmonic mean*.

Proof

$\mathcal{M}(a_1, a_2, \dots, a_n)$ is a *supraarithmetic mean* if and only if

$\mathcal{M}(a_1, a_2, \dots, a_n) \geq A_n(a_1, a_2, \dots, a_n)$, $(\forall) a_1, a_2, \dots, a_n \in \mathbb{R}_{>0}$. In particular, making the substitutions : $a_1 \rightarrow 1/a_1$, $a_2 \rightarrow 1/a_2$, \dots , $a_n \rightarrow 1/a_n$, we obtain:

$$\begin{aligned}
& M[1/a_1, 1/a_2, \dots, 1/a_n] \geq A_n(1/a_1, 1/a_2, \dots, 1/a_n) \Leftrightarrow \\
\Leftrightarrow & 1/M[1/a_1, 1/a_2, \dots, 1/a_n] \leq 1/A_n(1/a_1, 1/a_2, \dots, 1/a_n) \Leftrightarrow \\
\Leftrightarrow & {}^c M[a_1, a_2, \dots, a_n] \leq H_n(a_1, a_2, \dots, a_n) .
\end{aligned}$$

Definition 3 was used, as well as the well-known identity :

$$1/A_n(1/a_1, 1/a_2, \dots, 1/a_n) = H_n(a_1, a_2, \dots, a_n) .$$

Several *supraarithmetic* and *subharmonic means* have been proposed in [3].

7. Proposition , [3]

For any real numbers $a, b > 0$, the following inequalities hold :

$$\begin{aligned}
(a) \quad & \frac{a+b}{2} \stackrel{(1)}{\leq} \sqrt{\frac{a^2 + ab + b^2}{3}} \stackrel{(2)}{\leq} \sqrt{\frac{a^2 + b^2}{2}} \stackrel{(3)}{\leq} \\
& \stackrel{(3)}{\leq} \frac{a^2 + b^2}{a+b} \stackrel{(4)}{\leq} \sqrt{a^2 - ab + b^2} \stackrel{(5)}{\leq} \max\{a, b\} .
\end{aligned} \tag{11}$$

(*inequalities for supraarithmetic means*)

$$\begin{aligned}
(b) \quad & \frac{2}{\frac{1}{a} + \frac{1}{b}} \stackrel{(1)}{\geq} \sqrt{\frac{3}{\frac{1}{a^2} + \frac{1}{ab} + \frac{1}{b^2}}} \stackrel{(2)}{\geq} \sqrt{\frac{2}{\frac{1}{a^2} + \frac{1}{b^2}}} \stackrel{(3)}{\geq} \\
& \stackrel{(3)}{\geq} \frac{\frac{1}{a} + \frac{1}{b}}{\frac{1}{a^2} + \frac{1}{b^2}} \stackrel{(4)}{\geq} \frac{1}{\sqrt{\frac{1}{a^2} - \frac{1}{ab} + \frac{1}{b^2}}} \stackrel{(5)}{\geq} \min\{a, b\} .
\end{aligned} \tag{12}$$

(*inequalities for subharmonic means*)

Proof

(a) After routine calculations, the inequalities (1), (2), (3), (4) reduce to the obvious inequality, $a^2 + b^2 \geq 2ab$.

For inequality (5) (due to symmetry in a, b) we assume $a \leq b$ and then the inequality becomes,

$$\sqrt{a^2 - ab + b^2} \leq b \Leftrightarrow a^2 - ab + b^2 \leq b^2 \Leftrightarrow a^2 \leq ab \Leftrightarrow a \leq b .$$

In all inequalities, the equality relation occurs when $a = b$.

(b) The inequalities in (b) are obtained from (a), based on Theorem 6.

8. Remark

In *Proposition 7* , besides the *classical binary means*:

$$A_2(a,b) := \frac{a+b}{2} , \quad (\text{arithmetic mean}) ; \quad (13)$$

$$H_2(a,b) := \frac{2}{1/a+1/b} , \quad (\text{harmonic mean}) ; \quad (14)$$

$$Q_2(a,b) := \sqrt{\frac{a^2+b^2}{2}} , \quad (\text{quadratic mean}) , \quad (15)$$

other *means* also appear, which we will name and note in a *sui=generis* way :

$$^cQ_2(a,b) := \sqrt{\frac{2}{\frac{1}{a^2}+\frac{1}{b^2}}} , \quad (c\text{-quadratic mean}) , \quad (16)$$

$$C_2(a,b) := \frac{a^2+b^2}{a+b} , \quad (\text{contraharmonic mean}) , \quad (17)$$

$$^cC_2(a,b) := \frac{\frac{1}{a}+\frac{1}{b}}{\frac{1}{a^2}+\frac{1}{b^2}} , \quad (c\text{-contraharmonic mean}) , \quad (18)$$

$$P_2(a,b) := \sqrt{\frac{a^2+a b+b^2}{3}} , \quad (\text{extended power mean}) , \quad (19)$$

$$^cP_2(a,b) := \sqrt{\frac{3}{\frac{1}{a^2}+\frac{1}{ab}+\frac{1}{b^2}}} , \quad (c\text{-extended power mean}) \quad (20)$$

$$R_2(a,b) := \sqrt{a^2-a b+b^2} , \quad (\text{radical mean}) , \quad (21)$$

$$^cR_2(a,b) := \sqrt{\frac{1}{\frac{1}{a^2}-\frac{1}{ab}+\frac{1}{b^2}}} , \quad (c\text{-radical mean}) \quad (22)$$

All the above *means* are *symmetric* and *homogeneous* . In addition, in each of the pairs : $(A_2(a,b), H_2(a,b))$, $(Q_2(a,b), ^cQ_2(a,b))$, $(C_2(a,b), ^cC_2(a,b))$, $(P_2(a,b), ^cP_2(a,b))$, $(R_2(a,b), ^cR_2(a,b))$, $(\max(a,b), \min(a,b))$, the first component is the *supraarithmetic mean*, and the second component is the *subharmonic mean* .

In [6] , the following multiple inequality was proposed :

- If $a, b > 0$, then :

$$\frac{a+b}{2} \leq \ln \frac{e^a - e^b}{b-a} \leq \ln \frac{e^a + e^b}{2} \leq \frac{e^a + e^b - 2}{2} . \quad (23)$$

$$\text{As we have, } \frac{e^a + e^b - 2}{2} \geq \max\{a, b\} , \quad (24)$$

we will retain from (23) only the first two inequalities :

9. Proposition

If $a, b > 0$, then we have the following inequalities :

$$(a) \quad \frac{a+b}{2} \stackrel{(1)}{\leq} \ln \frac{e^b - e^a}{b-a} \stackrel{(2)}{\leq} \ln \frac{e^a + e^b}{2} \stackrel{(3)}{\leq} \max\{a, b\} ; \quad (25)$$

(inequalities for supraarithmetic means)

$$(b) \quad \frac{2}{\frac{1}{a} + \frac{1}{b}} \stackrel{(1)}{\geq} \frac{1}{\ln \frac{ab(e^{1/a} - e^{1/b})}{b-a}} \stackrel{(2)}{\geq} \frac{1}{\ln \frac{e^{1/a} + e^{1/b}}{2}} \stackrel{(3)}{\geq} \min\{a, b\} . \quad (26)$$

(inequalities for subharmonic means)

Proof

(a) Applying Hermite-Hadamard inequality for convex functions ,

$$f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \cdot \int_a^b f(x) \cdot dx \leq \frac{f(a) + f(b)}{2} , \quad (27)$$

for the function $f(x) = e^x$, we get :

$$e^{\frac{a+b}{2}} \leq \frac{e^b - e^a}{b-a} \leq \frac{e^a + e^b}{2} .$$

By applying the logarithm , the inequalities (1) , (2) from the statement are obtained . For inequality (3), for $a \leq b$, we have :

$$\ln \frac{e^a + e^b}{2} \leq \ln \frac{2e^b}{2} \leq \ln e^b = b = \max\{a, b\} .$$

In all inequalities, the equality relation occurs when $a = b$.

(b) The inequalities in **(b)** are obtained from **(a)** , based on *Theorem 6* .

10. Remark

And here let us notice that in *Proposition 9*, besides the *classical binary means* : the *arithmetic mean* and the *harmonic mean* , new *binary means* also appear, which we will name and note as follows :

$$Lde_2(a,b) := \ln \frac{e^b - e^a}{b - a} \quad , \quad (\text{log. diff. exp. mean}) , \quad (28)$$

$${}^c Lde_2(a,b) := \frac{1}{\ln \frac{ab(e^{1/a} - e^{1/b})}{b - a}} \quad , \quad (c - \text{log. diff. exp. mean}) , \quad (29)$$

$$Lse_2(a,b) := \ln \frac{e^a + e^b}{2} \quad , \quad (\text{log. sum exp. mean}) , \quad (30)$$

$${}^c Lse_2(a,b) := \frac{1}{\ln \frac{e^{1/a} + e^{1/b}}{2}} \quad , \quad (c - \text{log. sum exp. mean}) . \quad (31)$$

The means (28)-(31) are *symmetric* and *homogeneous* . In addition, in each of the pairs: $(A_2(a,b), H_2(a,b))$, $(Lde_2(a,b), {}^c Lde_2(a,b))$, $(Lse_2(a,b), {}^c Lse_2(a,b))$, $(\max(a,b), \min(a,b))$, the first component is the *supraarithmetic mean* , and the second component is the *subharmonic mean* .

In [5] , [6] , [7] – among others the following two inequalities were presented ;

$$\min(a,b) \leq (a^b \cdot b^a)^{\frac{1}{a+b}} \leq \frac{a+b}{2} \leq (a^a \cdot b^b)^{\frac{1}{a+b}} \leq \max(a,b) . \quad (32)$$

$$\min(a,b,c) \leq (a^{bc} \cdot b^{ca} \cdot c^{ab})^{\frac{1}{ab+bc+ca}} \leq \frac{a+b+c}{3} \leq (a^a \cdot b^b \cdot c^c)^{\frac{1}{a+b+c}} \leq \max(a,b,c) . \quad (33)$$

In these inequalities we observe binary and trinary means which are *supraarithmetical means* . We will try to generalize these *means* to the *n-ary case* .

11. Definition

For the numbers $a_1, a_2, \dots, a_n \in \mathbb{R}_{>0}$, we will consider the following two expressions :

$$E_n(a_1, a_2, \dots, a_n) := \left(\prod_{k=1}^n a_k^{a_k} \right)^{\frac{1}{\sum_{k=1}^n a_k}} , \quad (34)$$

$$F_n(a_1, a_2, \dots, a_n) := \left(\prod_{k=1}^n a_k^{\prod_{i=1, i \neq k}^n a_i} \right)^{\frac{1}{\sum_{k=1}^n \left(\prod_{i=1, i \neq k}^n a_i \right)}}. \quad (35)$$

12. Proposition

For any numbers $a_1, a_2, \dots, a_n \in \mathbb{R}_{>0}$, the statements hold :

- (a) The expression $E_n(a_1, a_2, \dots, a_n)$ is supraarithmetic mean .
- (b) The expression $F_n(a_1, a_2, \dots, a_n)$ is subharmonic mean .

Proof

The expression $E_n(a_1, a_2, \dots, a_n)$ is supraarithmetic mean of numbers a_1, a_2, \dots, a_n , if we have , according to Remark 2 :

$$\overset{\textcircled{1}}{A_n(a_1, a_2, \dots, a_n)} \leq \overset{\textcircled{2}}{E_n(a_1, a_2, \dots, a_n)} \leq \max\{a_1, a_2, \dots, a_n\} \quad . \quad (36)$$

Pentru inegalitatea $\textcircled{1}$, avem succesiv For inequality $\textcircled{1}$, we have successively :

$$\begin{aligned} A_n(a_1, a_2, \dots, a_n) \leq E_n(a_1, a_2, \dots, a_n) &\Leftrightarrow \ln A_n(a_1, a_2, \dots, a_n) \leq \ln E_n(a_1, a_2, \dots, a_n) \Leftrightarrow \\ &\Leftrightarrow \ln A_n(a_1, a_2, \dots, a_n) \leq \frac{1}{\sum_{k=1}^n a_k} \cdot \sum_{k=1}^n a_k \cdot \ln a_k \Leftrightarrow \left(\sum_{k=1}^n a_k \right) \cdot \ln A_n(a_1, a_2, \dots, a_n) \leq \sum_{k=1}^n a_k \cdot \ln a_k \Leftrightarrow \\ &\Leftrightarrow n \cdot A_n(a_1, a_2, \dots, a_n) \cdot \ln A_n(a_1, a_2, \dots, a_n) \leq \sum_{k=1}^n a_k \cdot \ln a_k \Leftrightarrow \\ &\Leftrightarrow A_n(a_1, a_2, \dots, a_n) \cdot \ln A_n(a_1, a_2, \dots, a_n) \leq \frac{1}{n} \cdot \sum_{k=1}^n a_k \cdot \ln a_k \quad . \end{aligned} \quad (*)$$

Using Jensen's inequality ,

$$\begin{aligned} f\left(\frac{a_1 + a_2 + \dots + a_n}{n}\right) \leq \frac{f(a_1) + f(a_2) + \dots + f(a_n)}{n} &\Leftrightarrow \\ \Leftrightarrow f(A_n(a_1, a_2, \dots, a_n)) \leq \frac{f(a_1) + f(a_2) + \dots + f(a_n)}{n} & , \end{aligned} \quad (37)$$

for the convex function $f: (0, \infty) \longrightarrow \mathbb{R}$, $f(x) = x \cdot \ln x$, we obtain :

$$A_n(a_1, a_2, \dots, a_n) \cdot \ln(A_n(a_1, a_2, \dots, a_n)) \leq \frac{a_1 \cdot \ln a_1 + a_2 \cdot \ln a_2 + \dots + a_n \cdot \ln a_n}{n} ,$$

what is the inequality $(*)$ above .

For the inequality $\textcircled{2}$, WLOG $a_1 \leq a_2 \leq \dots \leq a_n$ and we will have :

$$\begin{aligned}
E_n(a_1, a_2, \dots, a_n) &:= \left(\prod_{k=1}^n a_k^{a_k} \right)^{\frac{1}{\sum_{k=1}^n a_k}} \leq \left(\prod_{k=1}^n a_n^{a_k} \right)^{\frac{1}{\sum_{k=1}^n a_k}} = \\
&= \left(a_n^{\sum_{k=1}^n a_k} \right)^{\frac{1}{\sum_{k=1}^n a_k}} = a_n = \max\{a_1, a_2, \dots, a_n\} .
\end{aligned}$$

(b) We will demonstrate that $F_n(a_1, a_2, \dots, a_n)$ is the *conjugate of the mean* $E_n(a_1, a_2, \dots, a_n)$. Indeed, by *Definition 4*, we have :

$$\begin{aligned}
{}^c E_n(a_1, a_2, \dots, a_n) &\stackrel{\text{Def.4}}{=} \frac{1}{E_n\left(\frac{1}{a_1}, \frac{1}{a_2}, \dots, \frac{1}{a_n}\right)} = \frac{1}{\left(\prod_{k=1}^n \left(\frac{1}{a_k}\right)^{\frac{1}{a_k}}\right)^{\frac{1}{\sum_{k=1}^n \frac{1}{a_k}}}} = \\
&= \frac{1}{\frac{1}{\prod_{k=1}^n a_k^{\frac{1}{a_k}}}} = \left(\prod_{k=1}^n a_k^{\frac{1}{a_k}} \right)^{\frac{\prod_{k=1}^n a_k}{\sum_{i=1, i \neq k}^n \frac{1}{a_i}}} = \prod_{k=1}^n a_k^{\frac{1}{a_k} \cdot \frac{\prod_{k=1}^n a_k}{\sum_{i=1, i \neq k}^n \frac{1}{a_i}}} = \\
&= \left(\prod_{k=1}^n a_k^{\frac{1}{a_k}} \right)^{\frac{\prod_{i=1, i \neq k}^n a_k}{\sum_{i=1, i \neq k}^n \frac{1}{a_i}}} = \\
&= \prod_{k=1}^n a_k^{\frac{\prod_{i=1, i \neq k}^n a_k}{\sum_{i=1, i \neq k}^n \frac{1}{a_i}}} = F_n(a_1, a_2, \dots, a_n) .
\end{aligned}$$

The rest follows from *Theorem 6*.

Regarding the *supraarithmetic* and *subharmonic means* presented in this material it would be interesting to compare them and then establish an ordering of them. We will deal with this in a future paper .

References :

- [1.] **Bullen P. S. & Mitrinović D. S. & Vasić P. M.**, „*Means and Their Inequalities*” , D. Reidel Publidshing Company, Dordrecht/Boston , 1988 .
- [2] **Gini Corrado** , „*Le Medie*”, Unione Tipografico Torinese , Milano, 1958 .
- [3] **Mărghidanu Dorin** , *Proposed problem* , [Mathematical Inequalities](#) , 5 October **2025** ,
<https://www.facebook.com/photo/?fbid=25234326986199738&set=gm.4204226443198718&idorvanity=1486244404996949>
- [4] **Mărghidanu Dorin** , „*Refinements of the inequalities between arithmetic, geometric, and harmonic means*” , in « *Romanian Mathematical Magazine* » , February 24 , 2025 ,
on-line, <http://www.ssmrmh.ro/wp-content/uploads/2025/02/NEW-REFINEMENTS-OF-AM-GM-HM-INEQUALITIES.pdf>
- [5] **Mărghidanu Dorin** , „*On two exponential means*”, in « *OCTOGON Mathematical Magazine* » , Vol 34 , no 2 October , 2025 , (to appear) .
- [6] **Mărghidanu Dorin** , *Proposed problem* , [Short Mathematical Idea](#) , 5 May , **2021** ,
<https://www.facebook.com/photo?fbid=4302028806522861&set=gm.2204205463049216>
- [7] **Mărghidanu Dorin** , „*Two new means ” – Proposed problem* , [Math Time](#) , 2 November , **2024** .
<https://www.facebook.com/photo?fbid=9098245156901178&set=gm.3890347251253307&idorvanity=1486244404996949>
- [8] **Toader Gheorghe** , **Toader Silvia** , „*Greek means and the arithmetic–geometric mean*” , *RGMIA Monographs*, Victoria University, 2005. (ONLINE: <http://ajmaa.org/RGMIA/monographs.php/>).