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We first consider a small and nice problem: 

Problem 1: [Dang Ngoc Minh] Let three complex numbers x,y,z satisfy: 

, then we have identity: 𝑥2 + 𝑦2 + 𝑧2 + 𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥 = 0

​  3(𝑥9 + 𝑦9 + 𝑧9 − (𝑥 + 𝑦 + 𝑧)9)
2

= (𝑥6 + 𝑦6 + 𝑧6 + (𝑥 + 𝑦 + 𝑧)6)
3

 

We can prove this problem by using the Girard–Newton identities. However, it is a 
consequence of another identity that I will present below: 

 

*Let x1, ..., xn be variables, denote for k ≥ 1 by pk(x1, ..., xn) the k-th power sum: 
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and for k ≥ 0 denote by ek(x1, ..., xn) the elementary symmetric polynomial (that 
is, the sum of all distinct products of k distinct variables), so 
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https://en.wikipedia.org/wiki/Elementary_symmetric_polynomial
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compact identities: 
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Some problems can be proved using the above identities 

 

Problem 2: If x+y+z=0 then prove that: 

  ( 𝑥5+𝑦5+𝑧5

5 )2 = 𝑥3+𝑦3+𝑧3

3 . 𝑥7+𝑦7+𝑧7

7

 

Problem 3: If x+y+z=0 then prove that: 

 16(𝑥3 + 𝑦3 + 𝑧3)(𝑥5 + 𝑦5 + 𝑧5) + 15(𝑥4 + 𝑦4 + 𝑧4)2 = 30(𝑥8 + 𝑦8 + 𝑧8)

 

Problem 4: If x+y+z=0 then prove that: 

 3(𝑥2 + 𝑦2 + 𝑧2)3 + 4(𝑥3 + 𝑦3 + 𝑧3)2 = 12(𝑥6 + 𝑦6 + 𝑧6)

 

Problem 5: For x,y,z are complex numbers, such that:  

, prove that: 𝑥2 + 𝑦2 + 𝑧2 + 𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥 = 0

  (𝑥2 + 𝑦2 + 𝑧2)
5

+ (𝑥5 + 𝑦5 + 𝑧5)
2

= 0



 

Problem 6: For x,y,z are real numbers, prove that:  

  6(𝑥5 + 𝑦5 + 𝑧5) − 5(𝑥3 + 𝑦3 + 𝑧3)(𝑥2 + 𝑦2 + 𝑧2)

 = (𝑥 + 𝑦 + 𝑧)2[(𝑥 + 𝑦 + 𝑧)3 − 5(𝑥 + 𝑦 + 𝑧)(𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥) + 15𝑥𝑦𝑧]

 

Problem 7: [Lame] For x,y,z are real numbers, prove that:  

(x+y+z)7 - (x7+y7+z7) = 7(x+y)(x+z)(y+z)[(x2+y2+z2+xy+xz+yz)2+xyz(x+y+z)] 

 

Problem 8: [Candido] For x,y are real numbers, prove that: 

 2[𝑥4 + 𝑦4 + (𝑥 + 𝑦)4] = [𝑥2 + 𝑦2 + (𝑥 + 𝑦)2]
2

 

Problem 9: Show that the following rational function reduces to a polynomial: 

 (𝑥+𝑦+𝑧)(𝑥7+𝑦7+𝑧7)−(𝑥3+𝑦3+𝑧3)(𝑥5+𝑦5+𝑧5)
(𝑥+𝑦)(𝑦+𝑧)(𝑧+𝑥)

Proof: 
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The proof is complete. 

 

Problem 10: [Ramanujan]. For a,b,c,d are real numbers such that: ad=bc,  

prove that: 

 64[(a+b+c)6+(b+c+d)6+(a-d)6-(c+d+a)6-(d+a+b)6-(b-c)6] 
[(a+b+c)10+(b+c+d)10+(a-d)10-(c+d+a)10-(d+a+b)10-(b-c)10] = 

45[(a+b+c)8+(b+c+d)8+(a-d)8-(c+d+a)8-(d+a+b)8-(b-c)8]2 
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The proof is complete. 

 

Similarly, we can prove the other similar equalities 
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