
 
In ∆𝑨𝑩𝑪 the following relationship holds: 
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𝑳𝒆𝒕  𝒖𝒔  𝒇𝒐𝒓𝒎𝒂𝒍𝒊𝒕𝒆  𝒕𝒉𝒆  𝒍𝒆𝒇𝒕  𝒔𝒊𝒅𝒆  𝒐𝒇  𝒕𝒉𝒆  𝒈𝒊𝒗𝒆𝒏  𝒆𝒙𝒑𝒓𝒆𝒔𝒔𝒊𝒐𝒏  𝒂𝒄𝒄𝒐𝒓𝒅𝒊𝒏𝒈   

𝒕𝒐  𝒕𝒉𝒆  𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏𝒔  𝒐𝒇  𝑾𝒂𝒍𝒕𝒆𝒓  𝑱𝒂𝒏𝒐𝒖𝒔′  𝒕𝒉𝒆𝒐𝒓𝒆𝒎: 
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𝑰𝒇  𝒙, 𝒚, 𝒛 , 𝒂′, 𝒃′, 𝒄′ ∈ 𝑹+ 𝒂𝒏𝒅   
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𝑩𝒚 𝑾𝒂𝒍𝒕𝒆𝒓  𝑱𝒂𝒏𝒐𝒖𝒔′ 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚  , 𝒘𝒆  𝒉𝒂𝒗𝒆 ∶ 

(𝒓𝒄𝒓𝒃)𝟑 = 𝒙, (𝒓𝒄𝒓𝒂)𝟑 = 𝒚, (𝒓𝒂𝒓𝒃)𝟑 = 𝒛    𝒂𝒏𝒅 
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𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚  𝒉𝒐𝒍𝒅𝒔  𝒇𝒐𝒓 ∶ 𝒂 = 𝒃 = 𝒄. 


