
 
If 𝒏 ≥ 𝟑 then in ∆𝑨𝑩𝑪 the following relationship holds: 
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𝒂𝒃𝒄 = 𝟒𝑹𝒓𝒔 ≤
𝑬𝒖𝒍𝒆𝒓 & 𝑴𝒊𝒕𝒓𝒊𝒏𝒐𝒗𝒊𝒄
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𝑾𝒆 𝒏𝒆𝒆𝒅 𝒕𝒐 𝒔𝒉𝒐𝒘: 
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√𝟑(𝒙 − 𝟐)(𝒙𝒏−𝟏 + 𝟐𝒙𝒏−𝟐 + 𝟒. 𝒙𝒏−𝟑 … + 𝟐𝒏−𝟏) − (𝒙 − 𝟐) ≥ 𝟎 
 

 (𝒙 − 𝟐)(√𝟑(𝒙𝒏−𝟏 + 𝟐𝒙𝒏−𝟐 + 𝟒. 𝒙𝒏−𝟑 … + 𝟐𝒏−𝟏) − 𝟏) ≥ 𝟎 

 
𝒕𝒓𝒖𝒆  𝒂𝒔 𝒙 ≥ 𝟐 𝒂𝒏𝒅 𝒇𝒐𝒓 𝒏 ≥ 𝟑, (𝒙𝒏−𝟏 + 𝟐𝒙𝒏−𝟐 + 𝟒. 𝒙𝒏−𝟑 … + 𝟐𝒏−𝟏) − 𝟏 > 𝟎 

 
Equality  holds  for an equilateral triangle. 

 

 


