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(𝒂 + 𝐛 + 𝐜) = √𝟑𝐬 ⇔ (𝐬𝟐 − 𝟕𝐑𝐫 − 𝟒𝐫𝟐)𝟐 ≥
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𝟑𝐬𝟐 

⇔ 𝐬𝟒 − (𝟏𝟒𝐑𝐫 + 𝟏𝟏𝐫𝟐)𝐬𝟐 + 𝐫𝟐(𝟒𝟗𝐑𝟐 + 𝟓𝟔𝐑𝐫 + 𝟏𝟔𝐫𝟐) ≥
?
⏟

(∗)

𝟎 𝒂𝐧𝐝 

∵ (𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐)𝟐 ≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

𝟎 ∴ 𝐢𝐧 𝐨𝐫𝐝𝐞𝐫 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 (∗), 𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 

𝐋𝐇𝐒 𝐨𝐟 (∗) ≥
?

(𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐)𝟐 ⇔ (𝟔𝐑 − 𝟕𝐫)𝐬𝟐 ≥
?
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(∗∗)

𝐫(𝟔𝟗𝐑𝟐 − 𝟕𝟐𝐑𝐫 + 𝟑𝐫𝟐) 

𝐍𝐨𝐰, (𝟔𝐑 − 𝟕𝐫)𝐬𝟐 ≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

(𝟔𝐑 − 𝟕𝐫)(𝟏𝟔𝐑𝐫 − 𝟓𝐫𝟐) ≥
?

𝐫(𝟔𝟗𝐑𝟐 − 𝟕𝟐𝐑𝐫 + 𝟑𝐫𝟐) 

⇔ 𝟑𝐫𝟐(𝐑 − 𝟐𝐫)(𝟐𝟕𝐑 − 𝟏𝟔𝐫) ≥
?

𝟎 → 𝐭𝐫𝐮𝐞 ∵ 𝐑 ≥
𝐄𝐮𝒍𝐞𝐫

𝟐𝐫 ⇒ (∗∗) ⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 
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