
 
In acute ∆𝑨𝑩𝑪 the following relationship holds: 
 

𝟐 (
𝟏

𝐬𝐢𝐧 𝑩
+

𝟏

𝐬𝐢𝐧 𝑪
− √𝟑) ≥ 𝐜𝐨𝐭 𝑩 + 𝐜𝐨𝐭 𝑪 
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𝟐 (
𝟏

𝐬𝐢𝐧 𝑩
+

𝟏

𝐬𝐢𝐧 𝑪
− √𝟑) − 𝐜𝐨𝐭 𝑩 + 𝐜𝐨𝐭 𝑪 = 
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 𝑺𝒐: 𝟐 (
𝟏

𝐬𝐢𝐧 𝑩
+

𝟏

𝐬𝐢𝐧 𝑪
− √𝟑) ≥ 𝐜𝐨𝐭 𝑩 + 𝐜𝐨𝐭 𝑪 

 

 𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒇𝒐𝒓 𝑨 = 𝑩 = 𝑪 =
𝝅

𝟑
. 

 
 


