
 
𝑳𝒆𝒕 𝑨𝑩𝑪 𝒃𝒆 𝒂 𝒕𝒓𝒊𝒂𝒏𝒈𝒍𝒆 𝒘𝒊𝒕𝒉 𝒂𝒓𝒆𝒂 𝑭 𝒂𝒏𝒅 𝒂𝒓𝒆𝒂 𝒐𝒇 𝒕𝒉𝒆 𝒕𝒓𝒊𝒂𝒏𝒈𝒍𝒆 𝒘𝒊𝒕𝒉  

𝒔𝒊𝒅𝒆 𝒍𝒆𝒏𝒈𝒕𝒉𝒔  √𝒂(𝒃 + 𝒄 − 𝒂), √𝒃(𝒂 + 𝒄 − 𝒃), √𝒄(𝒂 + 𝒃 − 𝒄) 𝒃𝒆 𝑭′ 
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𝑳𝒆𝒕 𝒂′ = √𝒂(𝒃 + 𝒄 − 𝒂) = √𝟐𝒂(𝒔 − 𝒂), 𝒃′ = √𝒃(𝒂 + 𝒄 − 𝒃) = 

 

= √𝟐𝒃(𝒔 − 𝒃), 𝒄′ = √𝒄(𝒄 + 𝒂 − 𝒄) = √𝟐𝒄(𝒔 −  𝒄) 

 𝑾𝒆 𝒌𝒏𝒐𝒘 𝒕𝒉𝒂𝒕: (𝒂′𝒃′𝒄′)𝟐 ≥
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𝑾𝒆 𝒏𝒆𝒆𝒅 𝒕𝒐 𝒔𝒉𝒐𝒘: 
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 𝒐𝒓 𝑹𝟑 − 𝟔𝑹𝒓𝟐 + 𝟒𝒓𝟑 ≥ 𝟎  

𝒐𝒓 (𝑹 − 𝟐𝒓)(𝑹𝟐 + 𝟐𝑹𝒓 − 𝟐𝒓𝟐) ≥ 𝟎 𝒕𝒓𝒖𝒆 𝒃𝒚 𝑬𝒖𝒍𝒆𝒓 
 

Equality holds for an equilateral triangle. 
 
 
 

 


