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∑
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𝐜𝐨𝐭 𝐁 + 𝐜𝐨𝐭 𝐂
𝐜𝐲𝐜

≥ √𝟑 

  Proposed by Marin Chirciu-Romania 

Solution by Soumava Chakraborty-Kolkata-India 
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→ 𝐭𝐫𝐮𝐞 ∴ ∑
𝒙𝟐 + 𝐲𝐳

𝐲 + 𝐳
𝐜𝐲𝐜

≥ ∑ 𝒙

𝐜𝐲𝐜

 ∀ 𝒙, 𝐲, 𝐳 > 𝟎 𝒂𝐧𝐝 

𝐰𝐢𝐭𝐡 𝒙 ≡ 𝐜𝐨𝐭 𝐀 , 𝐲 ≡ 𝐜𝐨𝐭 𝐁 , 𝐳 ≡ 𝐜𝐨𝐭 𝐂 , 𝐰𝐞 𝐠𝐞𝐭 ∶ ∑
𝐜𝐨𝐭𝟐 𝐀 + 𝐜𝐨𝐭 𝐁 𝐜𝐨𝐭 𝐂

𝐜𝐨𝐭 𝐁 + 𝐜𝐨𝐭 𝐂
𝐜𝐲𝐜

≥ ∑ 𝐜𝐨𝐭 𝐀

𝐜𝐲𝐜

 

=
∑ 𝒂𝟐

𝐜𝐲𝐜

𝟒𝐅
≥

𝐈𝐨𝐧𝐞𝐬𝐜𝐮−𝐖𝐞𝐢𝐭𝐳𝐞𝐧𝐛𝐨𝐜𝐤

√𝟑 ∴ ∑
𝐜𝐨𝐭𝟐 𝐀 + 𝐜𝐨𝐭 𝐁 𝐜𝐨𝐭 𝐂

𝐜𝐨𝐭 𝐁 + 𝐜𝐨𝐭 𝐂
𝐜𝐲𝐜

≥ √𝟑 ∀ 𝒂𝐜𝐮𝐭𝐞 ∆ 𝐀𝐁𝐂, 
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