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(𝟐𝐬 + 𝒂)𝐜𝐲𝐜
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=
𝟐𝐬

𝟒𝐫𝟐𝐬𝟐
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𝟏

(𝟐𝐬 + 𝒂)(𝟐𝐬 + 𝐛)(𝟐𝐬 + 𝐜)
. ∑ (𝐛𝐜(𝟒𝐬𝟐 + 𝟐𝐬(𝟐𝐬 − 𝒂) + 𝐛𝐜))

𝐜𝐲𝐜

 

=
𝟐𝐬

𝟒𝐫𝟐𝐬𝟐
.
𝟖𝐬𝟐(𝐬𝟐 + 𝟒𝐑𝐫 + 𝐫𝟐) − 𝟐𝟒𝐑𝐫𝐬𝟐 + (𝐬𝟐 + 𝟒𝐑𝐫 + 𝐫𝟐)𝟐 − 𝟏𝟔𝐑𝐫𝐬𝟐

𝟐𝐬(𝟗𝐬𝟐 + 𝟔𝐑𝐫 + 𝐫𝟐)
≤
? 𝟏

𝟒𝐫𝟐
 

⇔ (𝟔𝐑 − 𝟗𝐫)𝐬𝟐 ≥
?
⏟

(∗)

𝐫(𝟒𝐑 + 𝐫)𝟐 𝒂𝐧𝐝 𝐢𝐧𝐝𝐞𝐞𝐝, (𝟔𝐑 − 𝟗𝐫)𝐬𝟐 ≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

 

(𝟔𝐑 − 𝟗𝐫)(𝟏𝟔𝐑𝐫 − 𝟓𝐫𝟐) ≥
?

𝐫(𝟒𝐑 + 𝐫)𝟐 ⇔ 𝟔𝐫𝟐(𝐑 − 𝟐𝐫) ≥ 𝟎 ∵ 𝐑 ≥
𝐄𝐮𝒍𝐞𝐫

𝟐𝐫 ⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 
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