

ROMANIAN MATHEMATICAL MAGAZINE

In ΔABC the following relationship holds:

$$\left(\sum_{cyc} r_a \right) \left(\sum_{cyc} \frac{1}{\cos^2 \left(\frac{A}{2} \right)} \right) \leq \frac{9R^2}{r}$$

Proposed by Kostantinos Geronikolas-Greece

Solution by Mirsadix Muzeffarov-Azerbaijan

$$\begin{aligned} & \left(\sum_{cyc} r_a \right) \left(\sum_{cyc} \frac{1}{\cos^2 \left(\frac{A}{2} \right)} \right) = (4R + r) \left(1 + \frac{(4R + r)^2}{s^2} \right) \\ & \stackrel{Gerretsen}{\leq} (4R + r) \left(1 + \frac{(4R + r)^2}{3r(4R + r)} \right) = (4R + r) \left(1 + \frac{4R + r}{3r} \right) = \\ & = (4R + r) \left(\frac{4(R + r)}{3r} \right) \stackrel{Euler}{\leq} \frac{9R}{2} \cdot \frac{(4R + 2R)}{3r} = \frac{9R^2}{r} \end{aligned}$$

Equality holds for $A = B = C$.