
 

In ∆𝑨𝑩𝑪 the following relationship holds: 
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√𝒂 + 𝒃 − 𝒄
≥  √𝒂 + √𝒃 + √𝒄 
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𝑰𝒏  ∆ 𝑨𝑩𝑪  𝒘𝒍𝒐𝒈  𝒂 ≤ 𝒃 ≤ 𝒄  , 𝒓𝒂 ≤ 𝒓𝒃 ≤ 𝒓𝒄 

𝑩𝒚  𝑪𝒉𝒆𝒃𝒚𝒔𝒉𝒆𝒗′𝒔  𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 ∶ 
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) =  √𝒂 + √𝒃 + √𝒄  
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