
 
𝐈𝐟 𝒂, 𝐛, 𝐜 > 𝟎, 𝐧 ∈ ℕ 𝒂𝐧𝐝 𝒂𝐛𝐜 = 𝟏 𝐭𝐡𝐞𝐧 ∶ 
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  Proposed by Zaza Mzhavanadze-Georgia 

Solution by Soumava Chakraborty-Kolkata-India 

𝐕𝐢𝒂 𝐖𝒂𝒍𝐭𝐞𝐫 𝐉𝒂𝐧𝐨𝐮𝐬, ∀ 𝐀’, 𝐁’, 𝐂’, 𝒙′, 𝐲′, 𝐳′ > 𝟎, 
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∀ 𝒂, 𝐛, 𝐜 > 𝟎 │𝒂𝐛𝐜 = 𝟏 ∧ 𝐧 ∈ ℕ, ′′ =′′  𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 = 𝟏 (𝐐𝐄𝐃) 
 


