
 
𝐈𝐟 𝒂, 𝐛, 𝐜 > 𝟎 𝒂𝐧𝐝 𝒂𝐛𝐜 = 𝟏 𝐭𝐡𝐞𝐧 ∶ 

∑
𝐛(𝒂𝐛)𝟐𝟎𝟐𝟔 + 𝐜. 𝐜𝟐.𝟐𝟎𝟐𝟔

(𝒂𝐛)𝟐𝟎𝟐𝟔 + (𝐛𝐜)𝟐𝟎𝟐𝟔
𝐜𝐲𝐜

≥ 𝟑 

  Proposed by Zaza Mzhavanadze-Georgia 

Solution by Soumava Chakraborty-Kolkata-India 

∀ 𝐀’, 𝐁’, 𝐂’, 𝒙′, 𝐲′, 𝐳′ > 𝟎, 
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(𝐀′ + 𝐁′) ≥

𝐖𝒂𝒍𝐭𝐞𝐫 𝐉𝒂𝐧𝐨𝐮𝐬
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𝐜𝐲𝐜

 

𝐍𝐨𝐰,∑
𝐛(𝒂𝐛)𝟐𝟎𝟐𝟔 + 𝐜. 𝐜𝟐.𝟐𝟎𝟐𝟔

(𝒂𝐛)𝟐𝟎𝟐𝟔 + (𝐛𝐜)𝟐𝟎𝟐𝟔
𝐜𝐲𝐜

=∑
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(𝐧 = 𝟐𝟎𝟐𝟔 𝒂𝐧𝐝 ∵ 𝒂𝐧 =
𝟏

𝐛𝐧𝐜𝐧
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(∵ (𝐛𝐜)𝐧 =
𝟏

𝒂𝐧
 𝒂𝐧𝐝 𝒂𝐧𝒂𝒍𝐨𝐠𝐬) =∑
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((𝐛𝐜)𝐧 =
𝟏

𝒂𝐧
 & 𝒂𝐧𝒂𝒍𝐨𝐠𝐬) =
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𝟏

𝐛𝐧
, 𝐲′ =

𝟏

𝐜𝐧
, 𝐳′ =

𝟏

𝒂𝐧
, 𝐀′ =

𝒂𝐧+𝟏

𝐛𝐧
, 𝐁′ =

𝐛𝐧+𝟏
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𝐛𝐧+𝟏
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𝟑.√√(
𝒂𝐧+𝟏. 𝐛𝐧+𝟏. 𝐜𝐧+𝟏
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𝟐
𝟑

= 𝟑. √𝒂𝐛𝐜
𝟑

= 𝟑 

∴∑
𝐛(𝒂𝐛)𝟐𝟎𝟐𝟔 + 𝐜. 𝐜𝟐.𝟐𝟎𝟐𝟔

(𝒂𝐛)𝟐𝟎𝟐𝟔 + (𝐛𝐜)𝟐𝟎𝟐𝟔
𝐜𝐲𝐜

≥ 𝟑 ∀ 𝒂, 𝐛, 𝐜 > 𝟎 │𝒂𝐛𝐜 = 𝟏, 

′′ =′′  𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 = 𝟏 (𝐐𝐄𝐃) 
 


