
 

If 𝒂, 𝒃, 𝒄, 𝒅 > 𝟎,
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= 𝟏 then: 

 

√𝒂𝒃 + √𝒂𝒄 + √𝒂𝒅 + √𝒃𝒄 + √𝒃𝒅 + √𝒄𝒅 ≤ 𝟔   
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𝑳𝒆𝒕 𝒙𝟏 = √𝒂, 𝒙𝟐 = √𝒃,  𝒙𝟑 = √𝒄, 𝒙𝟒 = √𝒅 
 

√𝒂𝒃 + √𝒂𝒄 + √𝒂𝒅 + √𝒃𝒄 + √𝒃𝒅 + √𝒄𝒅 = 𝒙𝟏𝒙𝟐 + 𝒙𝟏𝒙𝟑 + 𝒙𝟏𝒙𝟒 + 𝒙𝟐𝒙𝟑 + 𝒙𝟐𝒙𝟒 + 𝒙𝟑𝒙𝟒 
 

𝑮𝒊𝒗𝒆𝒏 
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√𝒂𝒃 + √𝒂𝒄 + √𝒂𝒅 + √𝒃𝒄 + √𝒃𝒅 + √𝒄𝒅 = 
= 𝒙𝟏𝒙𝟐 + 𝒙𝟏𝒙𝟑 + 𝒙𝟏𝒙𝟒 + 𝒙𝟐𝒙𝟑 + 𝒙𝟐𝒙𝟒 + 𝒙𝟑𝒙𝟒 ≤ 𝟔 

 
Equality holds for  a=b=c=d=1. 

 

 


