
 
𝐅𝐨𝐫 𝒂, 𝐛 ≥ 𝟎 𝐩𝐫𝐨𝐯𝐞 𝐭𝐡𝒂𝐭 ∶ 
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(
∵ (𝒂 + 𝟏)𝟒 ≥ 𝟏 ∴ 𝐰𝐞 𝐜𝒂𝐧 𝐬𝐞𝐭 ∶ (𝒂 + 𝟏)𝟒 = 𝟏 + 𝒙 𝐰𝐢𝐭𝐡 𝒙 ≥ 𝟎

𝒂𝐧𝐝 𝐬𝐢𝐦𝐢𝒍𝒂𝐫𝒍𝐲, 𝐰𝐞 𝐜𝒂𝐧 𝐬𝐞𝐭 ∶  (𝐛 + 𝟏)𝟒 = 𝟏 + 𝐲 𝐰𝐢𝐭𝐡 𝐲 ≥ 𝟎
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⇔
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→ 𝐭𝐫𝐮𝐞 ∴
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 ∀ 𝒂, 𝐛 ≥ 𝟎, 

′′ =′′ 𝐢𝐟𝐟 𝒂 = 𝐛 = 𝟎 (𝐐𝐄𝐃) 
 


