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For x,y € (O, E] prove that :
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Proposed by Dang Ngoc Minh-Vietnam

Solution by Soumava Chakraborty-Kolkata-India
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Sincex,yE(O,E] ~0<sinx,siny<1= > 1 and so we

sinx’siny
1
can assign : —— =1+ aand —— =1 + b; where a,b > 0 and then :
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Now, a®b + ab® — a?b? — 2ab + 1 = ab(a? + b?) — a?b? —2ab +1 >
ab(2ab) — a’b? —2ab+1 (~ a? +b? >2abVa,beRand~ ab> 0= ab>0)
= a’b? — 2ab + 1 = (ab — 1)? > 0 = (x) is true with equalityiffa=b A ab=1
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”=”iffx=y=g(QED)

s+1+a+1+b<2+(1+a)1+b)
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