

ROMANIAN MATHEMATICAL MAGAZINE

UP.572 Prove that $25/17$ is the largest positive value of the constant k such that:

$$\frac{1}{a^2 + k} + \frac{1}{b^2 + k} + \frac{1}{c^2 + k} + \frac{1}{d^2 + k} \geq \frac{4}{1 + k}$$

for any nonnegative real numbers a, b, c, d with at most one of them larger than 1 and $ab + ac + ad + bc + bd + cd = 6$.

Proposed by Vasile Cîrtoaje – Romania

Solution by proposer

Without loss of generality, assume that $a, b, c \in [0, 1]$ and $d \geq 1$. For $b = c = 1$, the inequality becomes

$$\frac{1}{a^2 + k} + \frac{1}{d^2 + k} \geq \frac{2}{1 + k}$$

under the constraint $ad + 4S = 5$, where $S = \frac{a+d}{2}$. From $5 = ad + 4S \leq S^2 + 4S$ and $5 = ad + 4S \geq 4S$, we get $1 \leq S \leq \frac{5}{4}$. Write the inequality as follows:

$$\begin{aligned} \frac{4S^2 - 2ad + 2k}{(ad - k)^2 + 4kS^2} &\geq \frac{2}{1 + k}, \\ \frac{4S^2 - 2(5 - 4S) + 2k}{(5 - k - 4S)^2 + 4kS^2} &\geq \frac{2}{1 + k}, \\ (S - 1)[15 - 3k - (k + 7)S] &\geq 0 \end{aligned}$$

Choosing $S = \frac{5}{4}$, we get the necessary condition $k \leq \frac{25}{17}$. So, we only need to prove the original inequality for $k = \frac{25}{17}$.

If c, d are fixed, then the expression

$$F = \frac{1}{a^2 + k} + \frac{1}{b^2 + k} + \frac{1}{c^2 + k} + \frac{1}{d^2 + k}$$

has the minimum value when

$$E(a, b) = \frac{1}{a^2 + k} + \frac{1}{b^2 + k}$$

has the minimum value. Denoting

$$x = a, y = b, A = c + d, B = 6 - cd,$$

ROMANIAN MATHEMATICAL MAGAZINE

we have $A > 0, B \geq 0, x, y \in [0, 1]$ and $xy + A(x + y) = B$. For $B = 0$, we have $x = y = 0$ (hence $a = b = 0$), while for $B > 0$, by Lemma below, it follows that $E(a, b)$ (hence F , too) has the minimum value for $\min\{a, b\} = 0$ or $a = b$. By extending this result to any two of a, b, c , it suffices to prove the original inequality for $a = b = c$, for $a = 0$ and $b = c$, and for $a = b = 0$.

Case 1: $a = b = c$. We need to show that

$$\frac{3}{c^2 + k} + \frac{1}{d^2 + k} \geq \frac{4}{1 + k}$$

for $0 \leq c \leq 1 \leq d$ such that $c^2 + cd = 2$. The inequality is equivalent to

$$(1 - c^2)^2(3 - k - c^2) \geq 0.$$

It is true because $3 - k - c^2 \geq 2 - k > 0$.

Case 2: $a = 0$ and $b = c$. We need to show that:

$$\frac{1}{k} + \frac{2}{c^2 + k} + \frac{1}{d^2 + k} \geq \frac{4}{1 + k}$$

for $0 \leq c \leq 1 \leq d$ such that $c^2 + 2cd = 6$. Write the inequality as follows:

$$\begin{aligned} \frac{2}{c^2 + k} - \frac{2}{1 + k} &\geq \frac{2}{1 + k} - \frac{1}{k} - \frac{1}{d^2 + k} \\ \frac{2(1 - c^2)}{(1 + k)(c^2 + k)} &\geq \frac{(k - 1)(1 - c^2)(36 - c^2)}{k(1 + k)[c^4 - 4(3 - k)c^2 + 36]} \end{aligned}$$

It is true if

$$\frac{2}{c^2 + k} \geq \frac{(k - 1)(36 - c^2)}{k[c^4 - 4(3 - k)c^2 + 36]},$$

i.e.

$$\frac{25}{c^2 + k} \geq \frac{4(36 - c^2)}{c^4 - 4(3 - k)c^2 + 36}$$

It is true if

$$\frac{24}{1 + k} \geq \frac{4 \cdot 36}{0 - 4(3 - k) + 36},$$

i.e.

$$\frac{2}{1 + k} \geq \frac{3}{6 + k}, \quad 9 \geq k.$$

Case 3: $a = b = 0$. We need to show that

ROMANIAN MATHEMATICAL MAGAZINE

$$\frac{2}{k} + \frac{1}{c^2 + k} + \frac{1}{d^2 + k} \geq \frac{4}{1 + k}$$

for $0 < c \leq 1 \leq d$ such that $cd = 6$. It is true if

$$\frac{2}{k} + \frac{1}{1 + k} + 0 \geq \frac{4}{1 + k},$$

i.e. $k \leq 2$.

The proof is completed. For $k = \frac{25}{17}$, the equality occurs when $a = b = c = d = 1$, and also for $a = 0, b = c = 1$ and $d = \frac{5}{2}$ (or any cyclic permutation).

Lemma. Let A and B be positive real constants, and let $x, y \in [0, 1]$ such that

$$xy + A(x + y) = B.$$

If $k > 1$, then the expression

$$E = \frac{1}{x^2 + k} + \frac{1}{y^2 + k}$$

has the minimum value for $\min\{x, y\} = 0$ or $x = y$.

Proof.

Let $s = x + y$ and $p = xy$. We need to show that if

$$0 \leq 4p \leq s^2$$

and

$$p + As = B,$$

then the expression

$$E = \frac{s^2 - 2p + 2k}{ks^2 + (p - k)^2}$$

has the minimum value for $p = 0$ (when $\min\{x, y\} = 0$) or $4p = s^2$ (when $x = y$). From

$$B = p + As \geq p + 2A\sqrt{p},$$

we get

$$p \leq p_1 = \left(\sqrt{A^2 + B} - A \right)^2,$$

with equality for $4p = s^2$. Since

$$kE = 1 + \frac{k^2 - p^2}{ks^2 + (p - k)^2} = 1 + F(p),$$

where

ROMANIAN MATHEMATICAL MAGAZINE

$$F(p) = \frac{A^2(k^2 - p^2)}{(A^2 + k)p^2 - 2k(A^2 + B)p + k^2A^2 + kB^2}$$

it suffices to show that $F(p)$ has the minimum value m when $p = 0$ or $p = p_1$. Write the inequality $F(p) \geq m$ as $F_1(p) \geq 0$, where

$$F_1(p) = -[(m+1)A^2 + km]p^2 + 2km(A^2 + B)p - (m-1)k^2A^2 - kmB^2.$$

Since $F_1(p)$ is concave on $[0, p_1]$, it has the minimum value 0 when $p = 0$ or $p = p_1$.