

ROMANIAN MATHEMATICAL MAGAZINE

UP.571 Prove that is the least value of the constant $k > 2$ such that:

$$(a^k + b^k + c^k) \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right) \geq 9$$

for any positive real numbers a, b, c with at most one of them less than 1 and

$$a^5 + b^5 + c^5 = 3$$

Proposed by Vasile Cîrtoaje – Romania

Solution by proposer

By choosing $b = 1, c \in (0, 1]$ and $a = \sqrt[5]{2 - c^5}$, the constraints are satisfied, and the inequality is equivalent to $E(c) \geq 0$, where

$$E(c) = (a^k + c^k + 1) \left(\frac{1}{a} + \frac{1}{c} + 1 \right) - 9.$$

Note that $c = 1$ implies $a = 1$. From $a^5 + c^5 = 2$, we get

$$a'(c) = \frac{-c^4}{a^4}, \quad a'(1) = -1,$$
$$a''(c) = \frac{4c^4 a'}{a^5} - \frac{4c^3}{a^4}, \quad a''(1) = -8,$$

and

$$E'(c) = k(a^{k-1}a' + c^{k-1}) \left(\frac{1}{a} + \frac{1}{c} + 1 \right) + (a^k + c^k + 1) \left(\frac{-a'}{a^2} - \frac{1}{c^2} \right),$$
$$E''(c) = k[(k-1)a^{k-2}(a')^2 + a^{k-1}a'' + (k-1)c^{k-2}] \left(\frac{1}{a} + \frac{1}{c} + 1 \right) + 2k(a^{k-1}a' + c^{k-1}) \left(\frac{-a'}{a^2} - \frac{1}{c^2} \right) + (a^k + c^k + 1) \left(\frac{-a''}{a^2} + \frac{2(a')^2}{a^3} + \frac{2}{c^3} \right).$$

We have $E(1) = 0, E'(1) = 0$ and

$$E''(1) = 3k(k-1-8+k-1) + 0 + 3(8+2+2) = 6(k-2)(k-3).$$

Since $E(1) = E'(1) = 0$, the condition $E''(1) \geq 0$ is necessary to have $E(c) \geq 0$ for $c \in (0, 1]$. This condition implies $k \geq 3$. To show that 3 is the least value of the constant k , we need to show that $F \geq 0$, where

$$F = (a^3 + b^3 + c^3) \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right) - 9.$$

ROMANIAN MATHEMATICAL MAGAZINE

Let

$$a \geq b \geq 1 \geq c.$$

For fixed a , assume that c and F are functions of b . By differentiating the equality constraint, we get

$$b^4 + c^4 a' = 0, \quad c' = -b^4 c^{-4},$$

therefore

$$\begin{aligned} F'(b) &= 3(b^2 + c^2 c') \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right) + (a^3 + b^3 + c^3) \left(\frac{-1}{b^2} + \frac{-c'}{c^2} \right) \\ &= 3(b^2 - b^4 c^{-2}) \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right) + (a^3 + b^3 + c^3) \left(\frac{-1}{b^2} + b^4 c^{-6} \right). \end{aligned}$$

We will show that $F'(b) \geq 0$. Denoting $x = \frac{b}{c}$, we have

$$F'(b) = -3c^2(x^4 - x^2) \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right) + b^{-2}(a^3 + b^3 + c^3)(x^6 - 1).$$

Since $x \geq 1$ and $a \geq b$, we have

$$F'(b) = -3c^2(x^4 - x^2) \left(\frac{2}{b} + \frac{1}{c} \right) + b^{-2}(2b^3 + c^3)(x^6 - 1),$$

hence

$$\begin{aligned} \frac{F'(b)}{c} &\geq -3(x^4 - x^2) \left(\frac{2}{x} + 1 \right) + \left(2x + \frac{1}{x^2} \right) (x^6 - 1) \\ &= \frac{(x^2 - 1)(2x^7 + 2x^5 - 2x^4 - 4x^3 + x^2 + 1)}{x^2} \\ &= \frac{(x^2 - 1)(x - 1)(2x^6 + 2x^5 + 4x^4 + 2x^3 - 2x^2 - x - 1)}{x^2} \geq 0. \end{aligned}$$

From $F'(b) \geq 0$, it follows that $F(b)$ is increasing and has the minimum value when b is minimum, hence when $b = 1$. Thus, it suffices to prove the desired inequality for $b = 1$.

We need to show that

$$(a^3 + c^3 + 1) \left(\frac{1}{a} + \frac{1}{c} + 1 \right) \geq 9$$

for $a \geq 1 \geq c > 0$ such that $a^5 + c^5 = 2$. Let $S = \frac{a+c}{2} > \frac{1}{2}$ and $p = ac$. From the known inequality $a^5 + c^5 \geq 2S^5$, we get $S \leq 1$, and from

$$2 = a^5 + c^5 = (a^2 + c^2)(a^3 + c^3) - a^2 c^2 (a + c) = (4S^2 - 2p)(8S^3 - 6Sp) - 2Sp^2,$$

ROMANIAN MATHEMATICAL MAGAZINE

we obtain

$$5Sp^2 = 20S^3p - 16S^5 + 1, \quad p = 2S^2 - \sqrt{\frac{4S^5 + 1}{5S}}.$$

We claim that

$$p \leq \frac{5S^2 - 1}{4},$$

that is

$$\sqrt{\frac{4S^5 + 1}{5S}} \geq \frac{3S^2 + 1}{4}.$$

By squaring, the inequality becomes

$$16(4S^5 + 1) \geq 5S(3S^2 + 1)^2, \quad 19S^5 - 30S^3 - 5S + 16 \geq 0,$$

$$(S - 1)^2(19S^3 + 38S^2 + 27S + 16) \geq 0$$

Write now the desired inequality as follows:

$$(8S^3 - 6Sp + 1) \left(\frac{2S}{p} + 1 \right) \geq 9, \quad 3Sp^2 + 2(2 + 3S^2 - 2S^3)p - S(8S^3 + 1) \leq 0,$$

$$\frac{3(20S^3p - 16S^5 + 1)}{5} + 2(2 + 3S^2 - 2S^3)p - S(8S^3 + 1) \leq 0,$$

$$48S^5 + 40S^4 + 5S - 3 \geq 10(4S^3 + 3S^2 + 2)p.$$

Since $p \leq \frac{5S^2 - 1}{4}$, we have

$$48S^5 + 40S^4 + 5S - 3 - 10(4S^3 + 3S^2 + 2)p \geq$$

$$\geq 48S^5 + 40S^4 + 5S - 3 - \frac{5(4S^3 + 3S^2 + 2)(5S^2 - 1)}{2}$$

$$= \frac{4 + 10S - 35S^2 + 20S^3 + 5S^4 - 4S^5}{2} = \frac{(1 - S)^2(4 + 18S - 3S^2 - 4S^3)}{2} \geq 0.$$

For $k = 3$ the equality occurs when $a = b = c = 1$.