
 
SP.584 Let be the sequence (𝒙𝒏)𝒏 ≥ 𝟏 defined by 

𝒙𝟏 = 𝟏, 𝒙𝒏+𝟐 = 𝟑𝒙𝒏+𝟏 − 𝒙𝒏, ∀𝒏 ∈ ℕ. Find: 
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Solution by proposers 

The sequence (𝒙𝒏)𝒏≥𝟎 verify a recurrence relationship by second order, then 
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] , ∀𝒏 ∈ ℕ. 

We show that: 𝒙𝟏 + 𝒙𝟑 + 𝒙𝟓 +⋯+ 𝒙𝟐𝒏−𝟏 = 𝒙𝒏
𝟐 , ∀𝒏 ∈ ℕ∗. We have: 
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Using the formula of a geometrical progression, it follows: 
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