
 
SP.572  Let 𝒂, 𝒃, 𝒄 be positive real numbers such that 𝒂 = 𝐦𝐢𝐧{𝒂, 𝒃, 𝒄} and 

𝒂𝟒𝒃𝒄 ≥ 𝟏, and let 

𝑭(𝒂, 𝒃, 𝒄) = √𝒂𝒃𝒄
𝟑
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Prove that: 

𝑭(𝒂, 𝒃, 𝒄) ≥ 𝑭 (
𝟏

𝒂
,
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𝒃
,
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𝒄
) 
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Solution by proposer 

Since 𝑭(𝒂, 𝒃, 𝒄) ≥ 𝟎 and 𝑭 (
𝟏

𝒂
,

𝟏

𝒃
,

𝟏

𝒄
) ≥ 𝟎 (by the AM-GM inequality), it suffices to prove the 

homogeneous inequality 

𝑭(𝒂, 𝒃, 𝒄) ≥ (𝒂𝟒𝒃𝒄)
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for 𝒂 = 𝐦𝐢𝐧{𝒂, 𝒃, 𝒄}. Due to homogeneity, we may set 𝒂 = 𝟏, hence 𝒃, 𝒄 ≥ 𝟏. Thus, we 

need to show that 
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Denote 

𝒔 =
𝒃 + 𝒄

𝟐
,    𝒑 = √𝒃𝒄, 

with 𝒔 ≥ 𝒑 ≥ 𝟏. The desired inequality is equivalent to 
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It is true if 
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i.e.  

𝟒𝒔𝟐 − 𝟐𝑨𝒔 + 𝟒𝒑𝟐 ≥ 𝟎,     𝑨 = 𝟑𝒑
𝟒
𝟑 + 𝟑𝒑

𝟐
𝟑 − 𝒑𝟐 − 𝟏. 

For the nontrivial case 𝑨 ≥ 𝟎, since 

𝟒(𝟒𝒔𝟐 − 𝟐𝑨𝒔 + 𝟒𝒑𝟐) = (𝟒𝒔 − 𝑨)𝟐 + 𝟏𝟔𝒑𝟐 − 𝑨𝟐 ≥ 𝟏𝟔𝒑𝟐 − 𝑨𝟐 = (𝟒𝒑 − 𝑨)(𝟒𝒑 + 𝑨), 

it suffices to show that 𝟒𝒑 − 𝑨 ≥ 𝟎, which is equivalent to 

𝒑𝟐 − 𝟑𝒑
𝟒
𝟑 + 𝟒𝒑 − 𝟑𝒑

𝟐
𝟑 + 𝟏 ≥ 𝟎. 

Denoting 𝒑 = 𝒙𝟑, we need to show that 

𝒙𝟔 − 𝟑𝒙𝟒 + 𝟒𝒙𝟑 − 𝟑𝒙𝟐 + 𝟏 ≥ 𝟎, 

that is 

(𝒙 − 𝟏)𝟐(𝒙𝟒 + 𝟐𝒙𝟑 + 𝟐𝒙 + 𝟏) ≥ 𝟎. 

The proof is completed. The equality occurs for 𝒂 = 𝒃 = 𝒄 ≥ 𝟏. 

Remark. The inequality 𝑭(𝒂, 𝒃, 𝒄) ≤ 𝑭 (
𝟏

𝒂
,

𝟏

𝒃
,

𝟏

𝒄
) is true in the particular case 𝒂, 𝒃, 𝒄 ≥ 𝟏 

(which involves 𝒂𝟒𝒃𝒄 ≥ 𝟏). 

 


