

ROMANIAN MATHEMATICAL MAGAZINE

SP.572 Let a, b, c be positive real numbers such that $a = \min\{a, b, c\}$ and $a^4bc \geq 1$, and let

$$F(a, b, c) = \sqrt[3]{abc} - \frac{3}{\frac{1}{a} + \frac{1}{b} + \frac{1}{c}}$$

Prove that:

$$F(a, b, c) \geq F\left(\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\right)$$

Proposed by Vasile Cîrtoaje – Romania

Solution by proposer

Since $F(a, b, c) \geq 0$ and $F\left(\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\right) \geq 0$ (by the AM-GM inequality), it suffices to prove the homogeneous inequality

$$F(a, b, c) \geq (a^4bc)^{\frac{1}{3}} \cdot F\left(\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\right)$$

for $a = \min\{a, b, c\}$. Due to homogeneity, we may set $a = 1$, hence $b, c \geq 1$. Thus, we need to show that

$$(bc)^{\frac{1}{3}} - \frac{3bc}{b + c + bc} \geq (bc)^{\frac{1}{3}} \left[\frac{1}{(bc)^{\frac{1}{3}}} - \frac{3}{1 + b + c} \right].$$

Denote

$$s = \frac{b + c}{2}, \quad p = \sqrt{bc},$$

with $s \geq p \geq 1$. The desired inequality is equivalent to

$$\begin{aligned} p^{\frac{2}{3}} - \frac{3p^2}{2s + p^2} &\geq 1 - \frac{3p^{\frac{2}{3}}}{2s + 1}, \\ p^{\frac{2}{3}} - 1 &\geq 3p^{\frac{2}{3}} \left(\frac{p^{\frac{4}{3}}}{2s + p^2} - \frac{1}{2s + 1} \right), \end{aligned}$$

ROMANIAN MATHEMATICAL MAGAZINE

$$\frac{p^{\frac{2}{3}}}{3p^{\frac{2}{3}}} \geq \frac{2s(p^{\frac{4}{3}} - 1) - p^{\frac{4}{3}}(p^{\frac{2}{3}} - 1)}{(2s + p^2)(2s + 1)}.$$

It is true if

$$\frac{1}{3p^{\frac{2}{3}}} \geq \frac{2s(p^{\frac{2}{3}} + 1) - p^{\frac{4}{3}}}{(2s + p^2)(2s + 1)},$$

i.e.

$$4s^2 - 2As + 4p^2 \geq 0, \quad A = 3p^3 + 3p^{\frac{2}{3}} - p^2 - 1.$$

For the nontrivial case $A \geq 0$, since

$$4(4s^2 - 2As + 4p^2) = (4s - A)^2 + 16p^2 - A^2 \geq 16p^2 - A^2 = (4p - A)(4p + A),$$

it suffices to show that $4p - A \geq 0$, which is equivalent to

$$p^2 - 3p^{\frac{4}{3}} + 4p - 3p^{\frac{2}{3}} + 1 \geq 0.$$

Denoting $p = x^3$, we need to show that

$$x^6 - 3x^4 + 4x^3 - 3x^2 + 1 \geq 0,$$

that is

$$(x - 1)^2(x^4 + 2x^3 + 2x + 1) \geq 0.$$

The proof is completed. The equality occurs for $a = b = c \geq 1$.

Remark. The inequality $F(a, b, c) \leq F\left(\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\right)$ is true in the particular case $a, b, c \geq 1$

(which involves $a^4bc \geq 1$).