

ROMANIAN MATHEMATICAL MAGAZINE

SP.571 For given $n \geq 3$, prove that 3 is the largest positive value of the constant k such that:

$$\frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n} - n \geq k(a_1 + a_2 + \cdots + a_n - n)$$

for any $a_1 \geq a_2 \geq \cdots \geq a_{n-1} \geq 1 \geq a_n > 0$ with

$$a_1a_2 + a_2a_3 + \cdots + a_{n-1}a_n + a_na_1 = n.$$

Proposed by Vasile Cîrtoaje – Romania

Solution by proposer

Choosing $a_2 = \cdots = a_{n-1} = 1$, then inequality becomes $\frac{1}{a_1} + \frac{1}{a_n} - 2 \geq k(a_1 + a_n - 2)$,

where $a_1 \geq 1 \geq a_n > 0$ such that $a_1a_n + a_1 + a_n = 3$. Let $p = a_1a_n$. From

$3 = a_1a_n + a_1 + a_n \geq p + 2\sqrt{p}$, we get $p \in (0, 1]$. Write the inequality as follows:

$$\frac{3-p}{p} - 2 \geq k(1-p), \quad (1-p)(3-kp) \geq 0.$$

It is true if and only if $3 - kp \geq 0$ for $p \in (0, 1)$. From the necessary condition

$\lim_{p \rightarrow 1} (3 - kp) \geq 0$, we get $k \leq 3$. To show that 3 is the largest positive value of k , we need

to prove the inequality

$$\frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n} + 2n \geq 3(a_1 + a_2 + \cdots + a_n).$$

By the AM-HM inequality, we have $\frac{1}{a_2} + \cdots + \frac{1}{a_{n-1}} \geq \frac{n-2}{S}$, where $S = \frac{a_2 + \cdots + a_{n-1}}{n-2} \geq 1$. So, it

suffices to show that $E \geq 0$, where

$$E = \frac{1}{a_1} + \frac{1}{a_n} + \frac{n-2}{S} + 2n - 3[a_1 + a_n + (n-2)S].$$

By Lemma below, we have $(n-3)S^2 + (a_1 + a_n)S + a_1a_n < n$. Since the expression E decreases when a_1 increases, we may increase a_1 to have

$$(n-3)S^2 + (a_1 + a_n)S + a_1a_n = n.$$

Denoting $x = \frac{a_1 + a_n}{2}$, we need to show that

$$\frac{2x}{n - (n-3)S^2 - 2Sx} + \frac{n-2}{S} + 2n - 3[2x + (n-2)S] \geq 0$$

for $(n-3)S^2 + 2Sx + a_1a_n = n$. From $(S - a_1)(S - a_n) \leq 0$, we obtain:

$$2Sx \geq a_1a_n + S^2 = n - 2Sx - (n-4)S^2$$

ROMANIAN MATHEMATICAL MAGAZINE

therefore

$$4Sx \geq n - (n - 4)S^2.$$

For fixed S , the desired inequality is equivalent to $F(x) \geq 0$, where

$$\begin{aligned} F(x) = & 12S^2x^2 + [6(2n - 5)S^2 - 4nS - 8n + 6]Sx + \\ & + [n - (n - 3)S^2][n - 2 + 2nS - 3(n - 2)S^2] \end{aligned}$$

Since

$$\begin{aligned} F'(x) = & 24S^2x + 6(2n - 5)S^3 - 4nS^2 - (8n - 6)S \geq \\ & \geq 6S[n - (n - 4)S^2] + 6(2n - 5)S^3 - 4nS^2 - (8n - 6)S \\ = & 6(n - 1)S^3 - 4nS^2 - (2n - 6)S \geq 6(n - 1)S^2 - 4nS^2 - (2n - 6)S = \\ & = n(n - 3)S(S - 1) \geq 0, \end{aligned}$$

$F(x)$ is increasing, hence

$$\begin{aligned} F(x) \geq F\left(\frac{n - (n - 4)S^2}{4S}\right) &= \frac{n[3(n - 2)S^4 - 4(n - 2)S^3 - 2nS^2 + 4nS - n - 2]}{4} \\ &= \frac{n(S - 1)^2[3(n - 2)S^2 + 2(n - 2)S - n - 2]}{4} \geq 0. \end{aligned}$$

The proof is completed. For $k = 3$, the equality occurs when $a_1 = a_2 = \dots = a_n = 1$.

Lemma:

Let $n \geq 3$. If $a_1 \geq a_2 \geq \dots \geq a_n \geq 0$ such that $a_1a_2 + a_2a_3 + \dots + a_na_1 = n$, then

$$(n - 3)S^2 + (a_1 + a_n)S + a_1a_n \leq n,$$

where $S = \frac{a_2 + \dots + a_{n-1}}{n-2}$.

Proof:

For $n = 3$, the inequality is an equality. For $n \geq 4$, we write the desired inequality in the homogeneous form:

$$(n - 3)S^2 + (a_1 + a_n)S + a_1a_n \leq a_1a_2 + a_2a_3 + \dots + a_na_1,$$

which is equivalent to

$$(n - 3)S^2 + a_1(S - a_2) + a_n(S - a_{n-1}) \leq a_2a_3 + \dots + a_{n-2}a_{n-1}.$$

Since $S - a_2 \leq 0$ and $S - a_{n-1} \geq 0$, it suffices to show that

$$(n - 3)S^2 + a_2(S - a_2) + a_{n-1}(S - a_{n-1}) \leq a_2a_3 + \dots + a_{n-2}a_{n-1},$$

which can be rewritten as

$$a_2a_3 + \dots + a_{n-2}a_{n-1} \geq (n - 3)S^2 + (a_2 + a_{n-1})S - a_2^2 - a_{n-1}^2.$$

ROMANIAN MATHEMATICAL MAGAZINE

Since the sequence a_2, a_3, \dots, a_{n-2} and a_3, a_4, \dots, a_{n-1} are decreasing, by Chebyshev's inequality we have

$$\begin{aligned}(n-3)(a_2a_3 + \dots + a_{n-2}a_{n-1}) &\geq (a_2 + \dots + a_{n-2})(a_3 + \dots + a_{n-1}) = \\ &= ((n-2)S - a_{n-1})((n-2)S - a_2).\end{aligned}$$

Thus, it suffices to show that

$$\frac{((n-2)S - a_{n-1})((n-2)S - a_2)}{n-3} \geq (n-3)S^2 + (a_2 + a_{n-1})S - a_2^2 - a_{n-1}^2,$$

which is equivalent to

$$\begin{aligned}(2n-5)S^2 - (2n-5)(a_2 + a_{n-1})S + (n-3)(a_2^2 + a_{n-1}^2) + a_2a_{n-1} &\geq 0, \\ (2n-5)(2S - a_2 - a_{n-1})^2 + (2n-7)(a_2 - a_{n-1})^2 &\geq 0.\end{aligned}$$

Clearly, the last inequality is true.