
 
SP.571 For given 𝒏 ≥ 𝟑, prove that 𝟑 is the largest positive value of the constant 𝒌 such 

that: 

𝟏

𝒂𝟏
+

𝟏

𝒂𝟐
+ ⋯ +

𝟏

𝒂𝒏
− 𝒏 ≥ 𝒌(𝒂𝟏 + 𝒂𝟐 + ⋯ + 𝒂𝒏 − 𝒏) 

for any 𝒂𝟏 ≥ 𝒂𝟐 ≥ ⋯ ≥ 𝒂𝒏−𝟏 ≥ 𝟏 ≥ 𝒂𝒏 > 𝟎 with 

𝒂𝟏𝒂𝟐 + 𝒂𝟐𝒂𝟑 + ⋯ + 𝒂𝒏−𝟏𝒂𝒏 + 𝒂𝒏𝒂𝟏 = 𝒏. 

Proposed by Vasile Cîrtoaje – Romania  

Solution by proposer 

Choosing 𝒂𝟐 = ⋯ = 𝒂𝒏−𝟏 = 𝟏, then inequality becomes 
𝟏

𝒂𝟏
+

𝟏

𝒂𝒏
− 𝟐 ≥ 𝒌(𝒂𝟏 + 𝒂𝒏 − 𝟐), 

where 𝒂𝟏 ≥ 𝟏 ≥ 𝒂𝒏 > 𝟎 such that 𝒂𝟏𝒂𝒏 + 𝒂𝟏 + 𝒂𝒏 = 𝟑. Let 𝒑 = 𝒂𝟏𝒂𝒏. From  

𝟑 = 𝒂𝟏𝒂𝒏 + 𝒂𝟏 + 𝒂𝒏 ≥ 𝒑 + 𝟐√𝒑, we get 𝒑 ∈ (𝟎, 𝟏]. Write the inequality as follows: 

𝟑 − 𝒑

𝒑
− 𝟐 ≥ 𝒌(𝟏 − 𝒑),   (𝟏 − 𝒑)(𝟑 − 𝒌𝒑) ≥ 𝟎. 

It is true if and only if 𝟑 − 𝒌𝒑 ≥ 𝟎 for 𝒑 ∈ (𝟎, 𝟏). From the necessary condition 

𝐥𝐢𝐦
𝒑→𝟏

(𝟑 − 𝒌𝒑) ≥ 𝟎, we get 𝒌 ≤ 𝟑. To show that 𝟑 is the largest positive value of 𝒌, we need 

to prove the inequality  

𝟏

𝒂𝟏
+

𝟏

𝒂𝟐
+ ⋯ +

𝟏

𝒂𝒏
+ 𝟐𝒏 ≥ 𝟑(𝒂𝟏 + 𝒂𝟐 + ⋯ + 𝒂𝒏). 

By the AM-HM inequality, we have 
𝟏

𝒂𝟐
+ ⋯ +

𝟏

𝒂𝒏−𝟏
≥

𝒏−𝟐

𝑺
, where 𝑺 =

𝒂𝟐+⋯+𝒂𝒏−𝟏

𝒏−𝟐
≥ 𝟏. So, it 

suffices to show that 𝑬 ≥ 𝟎, where  

𝑬 =
𝟏

𝒂𝟏
+

𝟏

𝒂𝒏
+

𝒏 − 𝟐

𝑺
+ 𝟐𝒏 − 𝟑[𝒂𝟏 + 𝒂𝒏 + (𝒏 − 𝟐)𝑺]. 

By Lemma below, we have (𝒏 − 𝟑)𝑺𝟐 + (𝒂𝟏 + 𝒂𝒏)𝑺 + 𝒂𝟏𝒂𝒏 < 𝒏. Since the expression 𝑬 

decreases when 𝒂𝟏 increases, we may increase 𝒂𝟏 to have 

(𝒏 − 𝟑)𝑺𝟐 + (𝒂𝟏 + 𝒂𝒏)𝑺 + 𝒂𝟏𝒂𝒏 = 𝒏. 

Denoting 𝒙 =
𝒂𝟏+𝒂𝒏

𝟐
, we need to show that 

𝟐𝒙

𝒏 − (𝒏 − 𝟑)𝑺𝟐 − 𝟐𝑺𝒙
+

𝒏 − 𝟐

𝑺
+ 𝟐𝒏 − 𝟑[𝟐𝒙 + (𝒏 − 𝟐)𝑺] ≥ 𝟎 

for (𝒏 − 𝟑)𝑺𝟐 + 𝟐𝑺𝒙 + 𝒂𝟏𝒂𝟐 = 𝒏. From (𝑺 − 𝒂𝟏)(𝑺 − 𝒂𝒏) ≤ 𝟎, we obtain: 

𝟐𝑺𝒙 ≥ 𝒂𝟏𝒂𝒏 + 𝑺𝟐 = 𝒏 − 𝟐𝑺𝒙 − (𝒏 − 𝟒)𝑺𝟐 



 
therefore 

𝟒𝑺𝒙 ≥ 𝒏 − (𝒏 − 𝟒)𝑺𝟐. 

For fixed 𝑺, the desired inequality is equivalent to 𝑭(𝒙) ≥ 𝟎, where 

𝑭(𝒙) = 𝟏𝟐𝑺𝟐𝒙𝟐 + [𝟔(𝟐𝒏 − 𝟓)𝑺𝟐 − 𝟒𝒏𝑺 − 𝟖𝒏 + 𝟔]𝑺𝒙 + 

+[𝒏 − (𝒏 − 𝟑)𝑺𝟐][𝒏 − 𝟐 + 𝟐𝒏𝑺 − 𝟑(𝒏 − 𝟐)𝑺𝟐] 

Since 

𝑭′(𝒙) = 𝟐𝟒𝑺𝟐𝒙 + 𝟔(𝟐𝒏 − 𝟓)𝑺𝟑 − 𝟒𝒏𝑺𝟐 − (𝟖𝒏 − 𝟔)𝑺 ≥ 

≥ 𝟔𝑺[𝒏 − (𝒏 − 𝟒)𝑺𝟐] + 𝟔(𝟐𝒏 − 𝟓)𝑺𝟑 − 𝟒𝒏𝑺𝟐 − (𝟖𝒏 − 𝟔)𝑺 

= 𝟔(𝒏 − 𝟏)𝑺𝟑 − 𝟒𝒏𝑺𝟐 − (𝟐𝒏 − 𝟔)𝑺 ≥ 𝟔(𝒏 − 𝟏)𝑺𝟐 − 𝟒𝒏𝑺𝟐 − (𝟐𝒏 − 𝟔)𝑺 = 

= 𝒏(𝒏 − 𝟑)𝑺(𝑺 − 𝟏) ≥ 𝟎, 

𝑭(𝒙) is increasing, hence 

𝑭(𝒙) ≥ 𝑭 (
𝒏 − (𝒏 − 𝟒)𝑺𝟐

𝟒𝑺
) =

𝒏[𝟑(𝒏 − 𝟐)𝑺𝟒 − 𝟒(𝒏 − 𝟐)𝑺𝟑 − 𝟐𝒏𝑺𝟐 + 𝟒𝒏𝑺 − 𝒏 − 𝟐]

𝟒
 

=
𝒏(𝑺 − 𝟏)𝟐[𝟑(𝒏 − 𝟐)𝑺𝟐 + 𝟐(𝒏 − 𝟐)𝑺 − 𝒏 − 𝟐]

𝟒
≥ 𝟎. 

The proof is completed. For 𝒌 = 𝟑, the equality occurs when 𝒂𝟏 = 𝒂𝟐 = ⋯ = 𝒂𝒏 = 𝟏. 

Lemma: 

 Let 𝒏 ≥ 𝟑. If 𝒂𝟏 ≥ 𝒂𝟐 ≥ ⋯ ≥ 𝒂𝒏 ≥ 𝟎 such that 𝒂𝟏𝒂𝟐 + 𝒂𝟐𝒂𝟑 + ⋯ + 𝒂𝒏𝒂𝟏 = 𝒏, then 

(𝒏 − 𝟑)𝑺𝟐 + (𝒂𝟏 + 𝒂𝒏)𝑺 + 𝒂𝟏𝒂𝒏 ≤ 𝒏, 

where 𝑺 =
𝒂𝟐+⋯+𝒂𝒏−𝟏

𝒏−𝟐
. 

Proof: 

For 𝒏 = 𝟑, the inequality is an equality. For 𝒏 ≥ 𝟒, we write the desired inequality in the 

homogeneous form: 

(𝒏 − 𝟑)𝑺𝟐 + (𝒂𝟏 + 𝒂𝒏)𝑺 + 𝒂𝟏𝒂𝒏 ≤ 𝒂𝟏𝒂𝟐 + 𝒂𝟐𝒂𝟑 + ⋯ + 𝒂𝒏𝒂𝟏, 

which is equivalent to 

(𝒏 − 𝟑)𝑺𝟐 + 𝒂𝟏(𝑺 − 𝒂𝟐) + 𝒂𝒏(𝑺 − 𝒂𝒏−𝟏) ≤ 𝒂𝟐𝒂𝟑 + ⋯ + 𝒂𝒏−𝟐𝒂𝒏−𝟏. 

Since 𝑺 − 𝒂𝟐 ≤ 𝟎 and 𝑺 − 𝒂𝒏−𝟏 ≥ 𝟎, it suffices to show that 

(𝒏 − 𝟑)𝑺𝟐 + 𝒂𝟐(𝑺 − 𝒂𝟐) + 𝒂𝒏−𝟏(𝑺 − 𝒂𝒏−𝟏) ≤ 𝒂𝟐𝒂𝟑 + ⋯ + 𝒂𝒏−𝟐𝒂𝒏−𝟏, 

which can be rewritten as 

𝒂𝟐𝒂𝟑 + ⋯ + 𝒂𝒏−𝟐𝒂𝒏−𝟏 ≥ (𝒏 − 𝟑)𝑺𝟐 + (𝒂𝟐 + 𝒂𝒏−𝟏)𝑺 − 𝒂𝟐
𝟐 − 𝒂𝒏−𝟏

𝟐 . 



 
Since the sequence 𝒂𝟐, 𝒂𝟑, … , 𝒂𝒏−𝟐 and 𝒂𝟑, 𝒂𝟒, … , 𝒂𝒏−𝟏 are decreasing, by Chebyshev’s 

inequality we have 

(𝒏 − 𝟑)(𝒂𝟐𝒂𝟑 + ⋯ + 𝒂𝒏−𝟐𝒂𝒏−𝟏) ≥ (𝒂𝟐 + ⋯ + 𝒂𝒏−𝟐)(𝒂𝟑 + ⋯ + 𝒂𝒏−𝟏) = 

= ((𝒏 − 𝟐)𝑺 − 𝒂𝒏−𝟏)((𝒏 − 𝟐)𝑺 − 𝒂𝟐). 

Thus, it suffices to show that 

((𝒏 − 𝟐)𝑺 − 𝒂𝒏−𝟏)((𝒏 − 𝟐)𝑺 − 𝒂)𝟐 )

𝒏 − 𝟑
≥ (𝒏 − 𝟑)𝑺𝟐 + (𝒂𝟐 + 𝒂𝒏−𝟏)𝑺 − 𝒂𝟐

𝟐 − 𝒂𝒏−𝟏
𝟐 , 

which is equivalent to 

(𝟐𝒏 − 𝟓)𝑺𝟐 − (𝟐𝒏 − 𝟓)(𝒂𝟐 + 𝒂𝒏−𝟏)𝑺 + (𝒏 − 𝟑)(𝒂𝟐
𝟐 + 𝒂𝒏−𝟏

𝟐 ) + 𝒂𝟐𝒂𝒏−𝟏 ≥ 𝟎, 

(𝟐𝒏 − 𝟓)(𝟐𝑺 − 𝒂𝟐 − 𝒂𝒏−𝟏)𝟐 + (𝟐𝒏 − 𝟕)(𝒂𝟐 − 𝒂𝒏−𝟏)𝟐 ≥ 𝟎. 

Clearly, the last inequality is true. 

 


