
 
JP.585 In 𝚫𝑨𝑩𝑪, 𝑨𝑨′,𝑩𝑩′, 𝑪𝑪′are internal bisectors which intersect the 

circumcircle of triangle in the points 𝑨′′, 𝑩′′, 𝑪′′. Prove that: 
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Solution by proposers 
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From (1) and (2), it follows: 
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