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JP.5781f x,y,z> 0andn € N,n = 2, in AABC holds:
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Solution by proposer

Lemma:
Ifx,y,z>0andn € N,n > 2,in AABC holds:
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Let’s get back to the main problem. Using the Lemma we obtain:
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Equality holds if and only if the triangle is equilateral. We have used above:

Lemma Tsintsifas:

If x,y,z > 0 thenin AABC holds:
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=2p? —2(p* —1r?> —4Rr) = 2(r* + 4Rr) = 2r(4R + 1).
We have used above the known identities in the triangle:
Ya=2pandY a® = 2(p* — r*> — 4Rr)
It remains to prove that:
2r(4R +71) > 2V3S ©r(4R+71) >/3rp © 4R + r > pV/3,
which is Doucet’s inequality.

Equality holds if and only if the triangle is equilateral.



