
 
JP.576 If 𝒂, 𝒃, 𝒄 > 𝟎, 𝒂 + 𝒃 + 𝒄 = 𝟑 and 𝟎 ≤ 𝝀 ≤ 𝟑 then: 
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Solution by proposer 
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which follows from: 

Lemma:  For any 𝒂, 𝒃, 𝒄 > 𝟎, 𝒂 + 𝒃 + 𝒄 = 𝟑 then: 

𝒂𝟐𝒃 + 𝒃𝟐𝒄 + 𝒄𝟐𝒂 + 𝒂𝒃𝒄 ≤ 𝟒 

WLOG, we can suppose that (𝒃 − 𝒂)(𝒃 − 𝒄) ≤ 𝟎 ⇔ 𝒃𝟐 ≤ 𝒂𝒃 + 𝒃𝒄 − 𝒂𝒄 

It suffices to prove that: 𝒂𝟐𝒃 + (𝒂𝒃 + 𝒃𝒄 − 𝒂𝒄)𝒄 + 𝒄𝟐𝒂 + 𝒂𝒃𝒄 ≤ 𝟒 ⇔ 𝒃(𝒂 + 𝒄)𝟐 ≤ 𝟒, 

which follows from AM-GM: 
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which follows from: 
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Equality holds if and only if 𝒂 = 𝒃 = 𝒄 = 𝟏. 


