

ROMANIAN MATHEMATICAL MAGAZINE

JP.576 If $a, b, c > 0, a + b + c = 3$ and $0 \leq \lambda \leq 3$ then:

$$\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} + \frac{\lambda abc}{a^2b + b^2c + c^2a + abc} \geq \frac{\lambda + 6}{4}$$

Proposed by Marin Chirciu – Romania

Solution by proposer

$$LHS = \sum \frac{a^2}{bc} \stackrel{cs}{\geq} \frac{(\sum a)^2}{\sum bc} = \frac{\sum a^2 + 2 \sum bc}{\sum bc} = 2 + \frac{\sum a^2}{\sum bc} \stackrel{(1)}{\geq} \frac{\lambda + 6}{4} + \frac{\lambda abc}{\sum a^2b + abc} = RHS$$

$$\text{where (1)} \Leftrightarrow 2 + \frac{\sum a^2}{\sum bc} \geq \frac{\lambda + 6}{4} + \frac{\lambda abc}{\sum a^2b + abc} \Leftrightarrow \frac{\sum a^2}{\sum bc} \geq \frac{\lambda - 2}{4} + \frac{\lambda abc}{\sum a^2b + abc},$$

which follows from:

Lemma: For any $a, b, c > 0, a + b + c = 3$ then:

$$a^2b + b^2c + c^2a + abc \leq 4$$

WLOG, we can suppose that $(b - a)(b - c) \leq 0 \Leftrightarrow b^2 \leq ab + bc - ac$

It suffices to prove that: $a^2b + (ab + bc - ac)c + c^2a + abc \leq 4 \Leftrightarrow b(a + c)^2 \leq 4$,

which follows from AM-GM:

$$\frac{b(a + c)^2}{4} = b \cdot \frac{a + c}{2} \cdot \frac{a + c}{2} \leq \left(\frac{b + \frac{a + c}{2} + \frac{a + c}{2}}{3} \right)^3 = \left(\frac{a + b + c}{3} \right)^3 = \left(\frac{3}{3} \right)^3 = 1.$$

It remains to prove that:

$$\frac{\sum a^2}{\sum bc} \geq \frac{\lambda - 2}{4} + \frac{\lambda abc}{4}$$

which follows from:

$$\frac{\sum a^2}{\sum bc} \geq 1$$

It suffices to prove that:

$$1 \geq \frac{\lambda - 2}{4} + \frac{\lambda abc}{4} \Leftrightarrow 1 - \frac{\lambda - 2}{4} \geq \frac{\lambda abc}{4} \Leftrightarrow \frac{6 - \lambda}{4} \geq \frac{\lambda abc}{4} \Leftrightarrow \frac{6 - \lambda}{\lambda} \geq abc$$

which follows from:

$$\frac{6 - \lambda}{\lambda} \stackrel{0 \leq \lambda \leq 3}{\geq} 1 = \left(\frac{a + b + c}{3} \right)^3 \stackrel{AGM}{\geq} abc$$

Equality holds if and only if $a = b = c = 1$.