

ROMANIAN MATHEMATICAL MAGAZINE

JP.571 If $x, y, z > 0, x + y + z = 3$ then find the minimum value of

$$P = \sum \frac{y+z}{x^3+2} + \frac{1}{2} \sum x^2$$

Proposed by Marin Chirciu – Romania

Solution by proposer

Lemma:

If $x, y, z > 0, x + y + z = 3$ then:

$$\frac{y+z}{x^3+2} \geq \frac{1}{2}(y+z) - \frac{1}{6}x^2(y+z)$$

Proof:

We have

$$\begin{aligned} \frac{y+z}{x^3+2} &= \frac{y+z}{2} \left(\frac{x^3+2-x^3}{x^3+2} \right) = \frac{y+z}{2} \left(1 - \frac{x^3}{x^3+2} \right) = \frac{y+z}{2} \left(1 - \frac{x^3}{x^3+1+1} \right) \stackrel{AGM}{\geq} \\ &\stackrel{AGM}{\geq} \frac{y+z}{2} \left(1 - \frac{x^3}{\sqrt[3]{x^3 \cdot 1 \cdot 1}} \right) = \\ &= \frac{y+z}{2} \left(1 - \frac{x^3}{3x} \right) = \frac{y+z}{2} \left(1 - \frac{x^2}{3} \right) = \frac{1}{2}(y+z) - \frac{1}{6}x^2(y+z) \end{aligned}$$

with equality for $x = 1$. Let's get back to the main problem.

Using the Lemma, we obtain:

$$\begin{aligned} P &= \sum \frac{y+z}{x^3+2} + \frac{1}{2} \sum x^2 \stackrel{\text{Lemma}}{\geq} \sum \left(\frac{1}{2}(y+z) - \frac{1}{6}x^2(y+z) \right) + \frac{1}{2} \sum x^2 = \\ &= \sum x - \frac{1}{6} \sum x^2 (3-x) + \frac{1}{2} \sum x^2 = \\ &= 3 + \frac{1}{6} \sum x^3 - \frac{1}{2} \sum x^2 + \frac{1}{2} \sum x^2 \stackrel{\text{Holder}}{\geq} 3 + \frac{1}{6} \cdot \frac{(\sum x)^3}{9} = 3 + \frac{1}{6} \cdot \frac{(3)^3}{9} = \frac{7}{2} \end{aligned}$$

It follows that $P = \frac{7}{2}$ and the minimum is touched for $(x, y, z) = (1, 1, 1)$.