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PROBLEMS FOR JUNIORS 

JP.571 If 𝒙, 𝒚, 𝒛 > 0, 𝑥 + 𝑦 + 𝑧 = 3 then find the minimum value of 

𝑷 =∑
𝒚+ 𝒛

𝒙𝟑 + 𝟐
+
𝟏

𝟐
∑𝒙𝟐 

Proposed by Marin Chirciu – Romania  

Solution by proposer 

Lemma: 

If 𝒙, 𝒚, 𝒛 > 0, 𝑥 + 𝑦 + 𝑧 = 3 then: 

𝒚 + 𝒛

𝒙𝟑 + 𝟐
≥
𝟏

𝟐
(𝒚 + 𝒛) −

𝟏

𝟔
𝒙𝟐(𝒚 + 𝒛) 

Proof: 

We have 

𝒚 + 𝒛

𝒙𝟑 + 𝟐
=
𝒚 + 𝒛

𝟐
(
𝒙𝟑 + 𝟐 − 𝒙𝟑

𝒙𝟑 + 𝟐
) =

𝒚 + 𝒛

𝟐
(𝟏 −

𝒙𝟑

𝒙𝟑 + 𝟐
) =

𝒚 + 𝒛

𝟐
(𝟏 −

𝒙𝟑

𝒙𝟑 + 𝟏 + 𝟏
) ≥
𝑨𝑮𝑴

 

≥
𝑨𝑮𝑴 𝒚 + 𝒛

𝟐
(𝟏 −

𝒙𝟑

𝟑√𝒙𝟑 ⋅ 𝟏 ⋅ 𝟏
𝟑 ) = 

=
𝒚 + 𝒛

𝟐
(𝟏 −

𝒙𝟑

𝟑𝒙
) =

𝒚 + 𝒛

𝟐
(𝟏 −

𝒙𝟐

𝟑
) =

𝟏

𝟐
(𝒚 + 𝒛) −

𝟏

𝟔
𝒙𝟐(𝒚 + 𝒛) 

with equality for 𝒙 = 𝟏. Let’s get back to the main problem. 

Using the Lemma, we obtain: 

𝑷 =∑
𝒚+ 𝒛

𝒙𝟑 + 𝟐
+
𝟏

𝟐
∑𝒙𝟐 ≥

𝑳𝒆𝒎𝒎𝒂
∑(

𝟏

𝟐
(𝒚 + 𝒛) −

𝟏

𝟔
𝒙𝟐(𝒚 + 𝒛)) +

𝟏

𝟐
∑𝒙𝟐 = 

=∑𝒙−
𝟏

𝟔
∑𝒙𝟐 (𝟑 − 𝒙) +

𝟏

𝟐
∑𝒙𝟐 = 

= 𝟑 +
𝟏

𝟔
∑𝒙𝟑 −

𝟏

𝟐
∑𝒙𝟐 +

𝟏

𝟐
∑𝒙𝟐 ≥

𝑯𝒐𝒍𝒅𝒆𝒓
𝟑 +

𝟏

𝟔
⋅
(∑𝒙)𝟑

𝟗
= 𝟑 +

𝟏

𝟔
⋅
(𝟑)𝟑

𝟗
=
𝟕

𝟐
 

It follows that 𝑷 =
𝟕

𝟐
 and the minimum is touched for (𝒙, 𝒚, 𝒛) = (𝟏, 𝟏, 𝟏). 
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JP.572 If 𝒂, 𝒃, 𝒄, 𝒅 > 0 then: 

𝒂√
𝒂

𝒂𝟑 + 𝟑𝒃𝒄𝒅
+ 𝒃√

𝒃

𝒃𝟑 + 𝟑𝒄𝒅𝒂
+ 𝒄√

𝒄

𝒄𝟑 + 𝟑𝒅𝒂𝒃
+ 𝒅√

𝒅

𝒅𝟑 + 𝟑𝒂𝒃𝒄
≥ 𝟐 

Proposed by Daniel Sitaru – Romania  

Solution by proposer 

Let be 𝒇(𝟎,∞) → ℝ;𝒇(𝒙) =
𝟑 𝐥𝐧 𝒙

𝟏𝟔
+

𝟏

√𝟏+𝟑𝒙
,     𝒇′(𝒙) =

𝟑

𝟏𝟔𝒙
−

𝟑

𝟐(𝟏+𝟑𝒙)√𝟏+𝟑𝒙
 

𝒇′(𝒙) = 𝟎 ⇒
𝟏

𝟖𝒙
=

𝟏

(√𝟏 + 𝟑𝒙)
𝟑 ⇒ √(𝟏+ 𝟑𝒙)𝟑 − 𝟖𝒙 = 𝟎 

Let be 𝒈: (𝟎,∞) → ℝ; 𝒈(𝒙) = √(𝟏 + 𝟑𝒙)𝟑 − 𝟖𝒙 

𝒈′(𝒙) =
𝟗

𝟐
√𝟏 + 𝟑𝒙 − 𝟖,   𝒈′′(𝒙) =

𝟗

𝟐
⋅

𝟑

𝟐√𝟏 + 𝟑𝒙
> 0 

𝒈′(𝒙) strictly increasing ⇒ 𝒈′ - injective 

𝒈′(𝒙) = 𝒈′(𝟏) = 𝟎 ⇒ 𝒙 = 𝟏 the unique solution  𝒇′(𝒙) = 𝟎 ⇒ 𝒙 = 𝟏 

𝑰𝒇 𝒙 < 1 𝑡ℎ𝑒𝑛 𝒇′(𝒙) < 0

𝑰𝒇 𝒙 > 1 𝑡ℎ𝑒𝑛 𝒇′(𝒙) > 0
 } ⇒ 𝒇(𝒙) ≥ 𝒇(𝟏) =

𝟏

𝟐
 

𝟑 𝐥𝐧 𝒙

𝟏𝟔
+

𝟏

√𝟏 + 𝟑𝒙
≥
𝟏

𝟐
; (∀)𝒙 > 0 

For 𝒙 =
𝒃𝒄𝒅

𝒂𝟑
⇒

𝟑

𝟏𝟔
𝐥𝐧 (

𝒃𝒄𝒅

𝒂𝟑
) +

𝟏

√𝟏+
𝟑𝒃𝒄𝒅

𝒂𝟑

≥
𝟏

𝟐
   (1) 

For 𝒙 =
𝒄𝒅𝒂

𝒃𝟑
⇒

𝟑

𝟏𝟔
𝐥𝐧 (

𝒄𝒅𝒂

𝒃𝟑
) +

𝟏

√𝟏+
𝟑𝒃𝒄𝒅

𝒃𝟑

≥
𝟏

𝟐
    (2) 

For 𝒙 =
𝒅𝒂𝒃

𝒄𝟑
⇒

𝟑

𝟏𝟔
𝐥𝐧 (

𝒅𝒂𝒃

𝒄𝟑
) +

𝟏

√𝟏+
𝟑𝒅𝒂𝒃

𝒄𝟑

≥
𝟏

𝟐
     (3) 

For 𝒙 =
𝒂𝒃𝒄

𝒅𝟑
⇒

𝟑

𝟏𝟔
𝐥𝐧 (

𝒂𝒃𝒄

𝒅𝟑
) +

𝟏

√𝟏+
𝟑𝒂𝒃𝒄

𝒅𝟑

≥
𝟏

𝟐
     (4) 

By adding (1); (2); (3); (4): 

𝟑

𝟏𝟔
𝐥𝐧 (

𝒃𝒄𝒅

𝒂𝟑
⋅
𝒄𝒅𝒂

𝒃𝟑
⋅
𝒅𝒂𝒃

𝒄𝟑
⋅
𝒂𝒃𝒄

𝒅𝟑
) +∑

𝟏

√𝟏+
𝟑𝒃𝒄𝒅
𝒂𝟑

𝒄𝒚𝒄

≥
𝟏

𝟐
⋅ 𝟒 
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𝟑

𝟏𝟔
𝐥𝐧 𝟏 +∑√

𝒂𝟑

𝒂𝟑 + 𝟑𝒃𝒄𝒅
𝒄𝒚𝒄

≥ 𝟐,           ∑𝒂√
𝒂

𝒂𝟑 + 𝟑𝒃𝒄𝒅
𝒄𝒚𝒄

≥ 𝟐 

Equality holds for: 𝒂 = 𝒃 = 𝒄 = 𝒅. 

JP.573 If 𝒂, 𝒃, 𝒄 > 0 and 𝝀 ≥
𝟏

𝟒
 then: 

𝒂

𝒂 + 𝒃
+

𝒃

𝒃 + 𝒄
+

𝒄

𝒄 + 𝒂
+ 𝝀(

𝒃

𝒂
+
𝒄

𝒃
+
𝒂

𝒄
) ≥

𝟑

𝟐
(𝟐𝝀 + 𝟏) 

Proposed by Marin Chirciu – Romania  

Solution by proposer 

With the substitution (𝒙, 𝒚, 𝒛) = (
𝒂

𝒃
,
𝒃

𝒄
,
𝒄

𝒂
) we have 𝒙𝒚𝒛 = 𝟏, 

𝒂

𝒂 + 𝒃
=

𝒂

𝒃 (
𝒂
𝒃 + 𝟏)

=
𝒙

𝒙 + 𝟏
=

𝒙

𝒙 + 𝒙𝒚𝒛
=

𝟏

𝟏 + 𝒚𝒛
 

𝒃

𝒂
+
𝒄

𝒃
+
𝒂

𝒄
=
𝟏

𝒙
+
𝟏

𝒚
+
𝟏

𝒛
=
𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙

𝒙𝒚𝒛
=
𝒙𝒚+ 𝒚𝒛 + 𝒛𝒙

𝟏
= 𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙 

The problem can be reformulated: 

If 𝒙, 𝒚, 𝒛 > 0, 𝑥𝑦𝑧 = 1 and 𝝀 ≥
𝟏

𝟒
 then: 

𝟏

𝟏 + 𝒚𝒛
+

𝟏

𝟏 + 𝒛𝒙
+

𝟏

𝟏 + 𝒙𝒚
+ 𝝀(𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙) ≥

𝟑

𝟐
(𝟐𝝀 + 𝟏). 

Proof: 

Denoting (𝒚𝒛, 𝒛𝒙, 𝒙𝒚) = (𝒎,𝒏, 𝒑) we obtain 

 
𝟏

𝟏+𝒎
+

𝟏

𝟏+𝒏
+

𝟏

𝟏+𝒑
+ 𝝀(𝒎+ 𝒏 + 𝒑) ≥

𝟑

𝟐
(𝟐𝝀 + 𝟏) 

which follows from: 

𝟏

𝟏 +𝒎
+

𝟏

𝟏 + 𝒏
+

𝟏

𝟏 + 𝒑
+ 𝝀(𝒎+ 𝒏 + 𝒑) ≥

𝑪𝑺 (𝟏 + 𝟏 + 𝟏)𝟐

𝒎+𝒏 + 𝒑 + 𝟑
+ 𝝀(𝒎 + 𝒏 + 𝒑) = 

=
𝟗

𝒎+ 𝒏+ 𝒑 + 𝟑
+ 𝝀(𝒎+ 𝒏+ 𝒑) ≥

(𝟏) 𝟑

𝟐
(𝟐𝝀 + 𝟏), 

where (1) ⇔
𝟗

𝒎+𝒏+𝒑+𝟑
+ 𝝀(𝒎+ 𝒏+ 𝒑) ≥

𝟑

𝟐
(𝟐𝝀 + 𝟏) ⇔

𝒎+𝒏+𝒑=𝒕 𝟗

𝒕+𝟑
+ 𝝀𝒕 ≥

𝟑

𝟐
(𝟐𝝀 + 𝟏) ⇔ 

⇔ 𝟐𝝀𝒕𝟐 − 𝟑𝒕 + 𝟗 − 𝟏𝟖𝝀 ≥ 𝟎 ⇔ (𝒕 − 𝟑)(𝟐𝝀𝒕 + 𝟔𝝀 − 𝟑) ≥ 𝟎, true from 𝒕 ≥ 𝟑 and 𝝀 ≥
𝟏

𝟒
, 
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see 𝒕 = 𝒎+ 𝒏+ 𝒑 = 𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙 ≥ 𝟑√(𝒙𝒚𝒛)𝟐
𝟑

= 𝟑√𝟏𝟐
𝟑

= 𝟑. 

Equality holds if and only if 𝒂 = 𝒃 = 𝒄. 

JP.574 In 𝚫𝑨𝑩𝑪 the following relationship holds: 

𝟐𝟕

𝟖
≤

(𝒂 + 𝒃 + 𝒄)𝟑

(𝒂 + 𝒃)(𝒃 + 𝒄)(𝒄 + 𝒂)
≥
𝟐𝟕𝑹

𝟏𝟔𝒓
 

Proposed by Marin Chirciu – Romania  

Solution by proposer 

Lemma: In 𝚫𝑨𝑩𝑪: 

(𝒂 + 𝒃 + 𝒄)𝟑

(𝒂 + 𝒃)(𝒃 + 𝒄)(𝒄 + 𝒂)
=

𝟒𝒑𝟐

𝒑𝟐 + 𝒓𝟐 + 𝟐𝑹𝒓
 

Proof: 

(𝒂 + 𝒃 + 𝒄)𝟑

(𝒂 + 𝒃)(𝒃 + 𝒄)(𝒄 + 𝒂)
=

(𝟐𝒑)𝟐

∑𝒂∑𝒃𝒄 − 𝒂𝒃𝒄
= 

=
𝟖𝒑𝟑

𝟐𝒑(𝒑𝟐 + 𝒓𝟐 + 𝟒𝑹𝒓) − 𝟒𝑹𝒓𝒑
=

𝟒𝒑𝟐

𝒑𝟐 + 𝒓𝟐 + 𝟐𝑹𝒓
 

Let’s get back to the main problem.Using the Lemma we obtain: 

Right hand inequality: 

(𝒂 + 𝒃 + 𝒄)𝟑

(𝒂 + 𝒃)(𝒃 + 𝒄)(𝒄 + 𝒂)
=

𝟒𝒑𝟐

𝒑𝟐 + 𝒓𝟐 + 𝟐𝑹𝒓
≤
(𝟏) 𝟐𝟕𝑹

𝟏𝟔𝒓
, 

where (1) ⇔
𝟒𝒑𝟐

𝒑𝟐+𝒓𝟐+𝟐𝑹𝒓
≤

𝟐𝟕𝑹

𝟏𝟔𝒓
⇔ 𝒑𝟐(𝟐𝟕𝑹 − 𝟏𝟔𝒓) + 𝟐𝟕𝑹𝒓(𝟐𝑹+ 𝒓) ≥ 𝟎. 

We distinguish the cases: 

Case 1. If (𝟐𝟕𝑹 − 𝟏𝟔𝒓) ≥ 𝟎 the inequality is obvious. 

Case 2. If (𝟐𝟕𝑹 − 𝟏𝟔𝒓) < 0 the inequality can be rewritten: 

𝟐𝟕𝑹𝒓(𝟐𝑹+ 𝒓) ≥ 𝒑𝟐(𝟏𝟔𝒓 − 𝟐𝟕𝑹), which follows from Gerretsen’s inequality: 

𝒑𝟐 ≤ 𝟒𝑹𝟐 + 𝟒𝑹𝒓 + 𝟑𝒓𝟐. 

It remains to prove that: 

𝟐𝟕𝑹𝒓(𝟐𝑹+ 𝒓) ≥ (𝟒𝑹𝟐 + 𝟒𝑹𝒓 + 𝟑𝒓𝟐)(𝟏𝟔𝒓 − 𝟐𝟕𝑹) ⇔ 

𝟓𝟒𝑹𝟑 − 𝟒𝟕𝑹𝟐𝒓 − 𝟕𝟒𝑹𝒓𝟐 − 𝟗𝟔𝒓𝟑 ≥ 𝟎 
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⇔ (𝑹− 𝟐𝒓)(𝟓𝟒𝑹𝟐 + 𝟔𝟏𝑹𝒓 + 𝟒𝟖𝒓𝟐) ≥ 𝟎, see 𝑹 ≥ 𝟐𝒓, (Euler). 

Equality holds if and only if the triangle is equilateral. 

Left hand inequality: 

(𝒂 + 𝒃 + 𝒄)𝟑

(𝒂 + 𝒃)(𝒃 + 𝒄)(𝒄 + 𝒂)
=

𝟒𝒑𝟐

𝒑𝟐 + 𝒓𝟐 + 𝟐𝑹𝒓
≥
(𝟐) 𝟐𝟕

𝟖
, 

where (2) ⇔
𝟐𝒑𝟐

𝒑𝟐+𝒓𝟐+𝟐𝑹𝒓
≥

𝟐𝟕

𝟖
⇔ 𝟓𝒑𝟐 ≥ 𝟐𝟕𝒓(𝟐𝑹+ 𝒓), which follows from Gerretsen’s 

inequality: 𝒑𝟐 ≥ 𝟏𝟔𝑹𝒓 − 𝟓𝒓𝟐. It remains to prove that: 

𝟓(𝟏𝟔𝑹𝒓 − 𝟓𝒓𝟐) ≥ 𝟐𝟕𝒓(𝟐𝑹+ 𝒓) ⇔ 𝟐𝟔𝑹 ≥ 𝟓𝟒𝒓 ⇔ 𝑹 ≥ 𝟐𝒓,  (Euler). 

Equality holds if and only if the triangle is equilateral. 

JP.575 Find 𝒙, 𝒚 ∈ ℝ such that: 

√𝒙𝟐 + 𝒚𝟐 +√(𝒙 − 𝟒)𝟐 + (𝒚 − 𝟑)𝟐 + √(𝒙 − 𝟒)𝟐 + 𝒚𝟐 +√𝒙𝟐 + (𝒚 − 𝟑)𝟐 = 𝟏𝟎 

Proposed by Daniel Sitaru – Romania  

Solution 1 by Marin Chirciu-Romania 

Using Minkowski inequality we obtain: 

√𝒙𝟐 + 𝒚𝟐 +√(𝒙 − 𝟒)𝟐 + (𝒚 − 𝟑)𝟐 = √𝒙𝟐 + 𝒚𝟐 + √(𝟒 − 𝒙)𝟐 + (𝟑 − 𝒚)𝟐 ≥ 

≥ √(𝒙 + 𝟒 − 𝒙)𝟐 + (𝒚 + 𝟑 − 𝒚)𝟐 = 𝟓 

with equal for 
𝒙

𝒚
=

𝟒−𝒙

𝟑−𝒚
. 

√(𝒙 − 𝟒)𝟐 + 𝒚𝟐 +√𝒙𝟐 + (𝒚 − 𝟑)𝟐 = √(𝟒 − 𝒙)𝟐 + 𝒚𝟐 + √𝒙𝟐 + (𝟑 − 𝒚)𝟐 ≥ 

≥ √(𝟒 − 𝒙 + 𝒙)𝟐 + (𝒚 + 𝟑 − 𝒚)𝟐 = 𝟓 

with equal for 
𝟒−𝒙

𝒚
=

𝒙

𝟑−𝒚
. 

Adding the two equalities we obtain: 

√𝒙𝟐 + 𝒚𝟐 +√(𝒙 − 𝟒)𝟐 + (𝒚 − 𝟑)𝟐 + √(𝒙 − 𝟒)𝟐 + 𝒚𝟐 +√𝒙𝟐 + (𝒚 − 𝟑)𝟐 ≥ 𝟏𝟎 

with equal for: 
𝒙

𝒚
=

𝟒−𝒙

𝟑−𝒚
 and 

𝟒−𝒙

𝒚
=

𝒙

𝟑−𝒚
⇔ (𝒙, 𝒚) = (𝟐,

𝟑

𝟐
). 

We deduce that the solution of the equation is (𝒙, 𝒚) = (𝟐,
𝟑

𝟐
). 

Remark: The problem can be developed. Let be 𝝀 ≥ 𝟎 fixed. Being 𝒙, 𝒚 ∈ ℝ such that: 



 
www.ssmrmh.ro 

8 39-RMM WINTER EDITION 2025-SOLUTIONS 

 

√𝒙𝟐 + 𝒚𝟐 + √(𝒙 − 𝟒𝝀)𝟐 + (𝒚 − 𝟑𝝀)𝟐 + √(𝒙 − 𝟒𝝀)𝟐 + 𝒚𝟐 +√𝒙𝟐 + (𝒚 − 𝟑𝝀)𝟐 = 𝟏𝟎𝝀 

Marin Chirciu 

Solution: Using Minkowski inequality we obtain: 

√𝒙𝟐 + 𝒚𝟐 + √(𝒙 − 𝟒𝝀)𝟐 + (𝒚 − 𝟑𝝀)𝟐 = √𝒙𝟐 + 𝒚𝟐 + √(𝟒𝝀 − 𝒙)𝟐 + (𝟑𝝀 − 𝒚)𝟐 ≥ 

≥ √(𝒙 + 𝟒𝝀 − 𝒙)𝟐 + (𝒚 + 𝟑𝝀 − 𝒚)𝟐 = 𝟓𝝀, with equal for 
𝒙

𝒚
=

𝟒𝝀−𝒙

𝟑𝝀−𝒚
. 

√(𝒙 − 𝟒𝝀)𝟐 + 𝒚𝟐 +√𝒙𝟐 + (𝒚 − 𝟑𝝀)𝟐 = √(𝟒𝝀 − 𝒙)𝟐 + 𝒚𝟐 + √𝒙𝟐 + (𝟑𝝀 − 𝒚)𝟐 ≥ 

≥ √(𝟒𝝀 − 𝒙 + 𝒙)𝟐 + (𝒚 + 𝟑𝝀 − 𝒚)𝟐 = 𝟓𝝀, 

with equal for 
𝟒𝝀−𝒙

𝒚
=

𝒙

𝟑𝝀−𝒚
.Adding the two equality we obtain: 

√𝒙𝟐 + 𝒚𝟐 + √(𝒙 − 𝟒𝝀)𝟐 + (𝒚 − 𝟑𝝀)𝟐 + √(𝒙 − 𝟒𝝀)𝟐 + 𝒚𝟐 +√𝒙𝟐 + (𝒚 − 𝟑𝝀)𝟐 ≥ 𝟏𝟎𝝀 

with equal for 
𝒙

𝒚
=

𝟒𝝀−𝒙

𝟑𝝀−𝒚
 and 

𝟒𝝀−𝒙

𝒚
=

𝒙

𝟑𝝀−𝒚
⇔ (𝒙, 𝒚) = (𝟐𝝀,

𝟑𝝀

𝟐
). 

We deduce that the solution of the equation is (𝒙, 𝒚) = (𝟐𝝀,
𝟑𝝀

𝟐
). 

Note: For 𝝀 = 𝟏 we obtain Problem JP.575 from RMM Number 39, Winter 2025. 

JP.575. Find 𝒙, 𝒚 ∈ ℝ such that: 

√𝒙𝟐 + 𝒚𝟐 +√(𝒙 − 𝟒)𝟐 + (𝒚 − 𝟑)𝟐 + √(𝒙 − 𝟒)𝟐 + 𝒚𝟐 +√𝒙𝟐 + (𝒚 − 𝟑)𝟐 = 𝟏𝟎. 

Daniel Sitaru – Romania  

Solution 2 by proposer 

Let be 𝑨(𝟒, 𝟎);𝑩(𝟎, 𝟑); 𝑪(𝟒, 𝟑);𝑶(𝟎, 𝟎) 
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𝑴𝑶 = √𝒙𝟐 + 𝒚𝟐;𝑴𝑪 = √(𝒙 − 𝟒)𝟐 + (𝒚 − 𝟑)𝟐 

𝑨𝑩 = √𝟒𝟐 + 𝟑𝟐 = 𝟓;𝑴𝑨 = √(𝒙 − 𝟒)𝟐 + 𝒚𝟐 

𝑴𝑩 = √𝒙𝟐 + (𝒚 − 𝟑)𝟐; 𝑪𝑶 = √𝟒𝟐 + 𝟑𝟐 = 𝟓 

In 𝚫𝑴𝑶𝑪:𝑴𝑶+𝑴𝑪 ≥ 𝑶𝑪 

In 𝚫𝑴𝑨𝑩:  𝑴𝑨 +𝑴𝑩 ≥ 𝑨𝑩 

By adding: 

𝑴𝑶+𝑴𝑪+𝑴𝑨+𝑴𝑩 ≥ 𝑶𝑪+ 𝑨𝑩 

By adding: 

𝑴𝑶+𝑴𝑪+𝑴𝑨+𝑴𝑩 ≥ 𝑶𝑪+ 𝑨𝑩 

√𝒙𝟐 + 𝒚𝟐 +√(𝒙 − 𝟒)𝟐 + (𝒚 − 𝟑)𝟐 + √(𝒙 − 𝟒)𝟐 + 𝒚𝟐 +√𝒙𝟐 + (𝒚 − 𝟑)𝟐 = 𝟏𝟎 

𝑴𝑶+𝑴𝑪+𝑴𝑨+𝑴𝑩 = 𝑶𝑪+ 𝑨𝑩 

Equality holds for {𝑴} = 𝑶𝑪 ∩ 𝑨𝑩 

𝑴(
𝒙𝑨 + 𝒙𝑩

𝟐
;
𝒚𝑨 + 𝒚𝑩

𝟐
) = (

𝟒 + 𝟎

𝟐
;
𝟎 + 𝟑

𝟐
) = (𝟐,

𝟑

𝟐
) ⇒ 𝒙 = 𝟐;𝒚 =

𝟑

𝟐
 

 

JP.576 If 𝒂, 𝒃, 𝒄 > 0, 𝑎 + 𝑏 + 𝑐 = 3 and 𝟎 ≤ 𝝀 ≤ 𝟑 then: 

𝒂𝟐

𝒃𝒄
+
𝒃𝟐

𝒄𝒂
+
𝒄𝟐

𝒂𝒃
+

𝝀𝒂𝒃𝒄

𝒂𝟐𝒃 + 𝒃𝟐𝒄 + 𝒄𝟐𝒂 + 𝒂𝒃𝒄
≥
𝝀 + 𝟔

𝟒
 

Proposed by Marin Chirciu – Romania  

Solution by proposer 

𝑳𝑯𝑺 =∑
𝒂𝟐

𝒃𝒄
≥
𝑪𝑺 (∑𝒂)𝟐

∑𝒃𝒄
=
∑𝒂𝟐 + 𝟐∑𝒃𝒄

∑𝒃𝒄
= 𝟐 +

∑𝒂𝟐

∑𝒃𝒄
≥
(𝟏) 𝝀 + 𝟔

𝟒
+

𝝀𝒂𝒃𝒄

∑𝒂𝟐𝒃 + 𝒂𝒃𝒄
= 𝑹𝑯𝑺 

where (1) ⇔ 𝟐+
∑𝒂𝟐

∑𝒃𝒄
≥

𝝀+𝟔

𝟒
+

𝝀𝒂𝒃𝒄

∑𝒂𝟐𝒃+𝒂𝒃𝒄
⇔

∑𝒂𝟐

∑𝒃𝒄
≥

𝝀−𝟐

𝟒
+

𝝀𝒂𝒃𝒄

∑𝒂𝟐𝒃+𝒂𝒃𝒄
, 

which follows from: 

Lemma:  For any 𝒂, 𝒃, 𝒄 > 0, 𝑎 + 𝑏 + 𝑐 = 3 then: 

𝒂𝟐𝒃 + 𝒃𝟐𝒄 + 𝒄𝟐𝒂 + 𝒂𝒃𝒄 ≤ 𝟒 

WLOG, we can suppose that (𝒃 − 𝒂)(𝒃 − 𝒄) ≤ 𝟎 ⇔ 𝒃𝟐 ≤ 𝒂𝒃 + 𝒃𝒄 − 𝒂𝒄 
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It suffices to prove that: 𝒂𝟐𝒃 + (𝒂𝒃 + 𝒃𝒄 − 𝒂𝒄)𝒄 + 𝒄𝟐𝒂 + 𝒂𝒃𝒄 ≤ 𝟒 ⇔ 𝒃(𝒂 + 𝒄)𝟐 ≤ 𝟒, 

which follows from AM-GM: 

𝒃(𝒂 + 𝒄)𝟐

𝟒
= 𝒃 ⋅

𝒂 + 𝒄

𝟐
⋅
𝒂 + 𝒄

𝟐
≤ (

𝒃 +
𝒂 + 𝒄
𝟐 +

𝒂 + 𝒄
𝟐

𝟑
)

𝟑

= (
𝒂+ 𝒃 + 𝒄

𝟑
)
𝟑

= (
𝟑

𝟑
)
𝟑

= 𝟏. 

It remains to prove that: 

∑𝒂𝟐

∑𝒃𝒄
≥
𝝀 − 𝟐

𝟒
+
𝝀𝒂𝒃𝒄

𝟒
 

which follows from: 

∑𝒂𝟐

∑𝒃𝒄
≥ 𝟏 

It suffices to prove that:  

𝟏 ≥
𝝀 − 𝟐

𝟒
+
𝝀𝒂𝒃𝒄

𝟒
⇔ 𝟏 −

𝝀 − 𝟐

𝟒
≥
𝝀𝒂𝒃𝒄

𝟒
⇔
𝟔 − 𝝀

𝟒
≥
𝝀𝒂𝒃𝒄

𝟒
⇔
𝟔 − 𝝀

𝝀
≥ 𝒂𝒃𝒄 

which follows from: 

 
𝟔−𝝀

𝝀
≥

𝟎≤𝝀≤𝟑
𝟏 = (

𝒂+𝒃+𝒄

𝟑
)
𝟑

≥
𝑨𝑮𝑴

𝒂𝒃𝒄 

Equality holds if and only if 𝒂 = 𝒃 = 𝒄 = 𝟏. 

JP.577 If 𝒙, 𝒚, 𝒛 > 0, 𝑥𝑦𝑧 = 1 and 𝒏 ∈ ℕ∗ then: 

∑
𝒙𝟐𝒏+𝟏

𝒙 + 𝒚 + 𝟏
≥ 𝟏 

Proposed by Marin Chirciu – Romania  

Solution by proposer 

Lemma: If 𝒙, 𝒚, 𝒛 > 0, 𝑥𝑦𝑧 = 1 and 𝒌 ∈ ℕ then: 

∑𝒙𝒌+𝟏 ≥∑𝒙𝒌 

Proof: 

Using Chebyshev’s inequality we obtain: 

∑𝒙𝒌+𝟏 =∑𝒙 ⋅ 𝒙𝒌 ≥
𝑪𝒉𝒆𝒃𝒚𝒔𝒉𝒆𝒗 𝟏

𝟑
∑𝒙∑𝒙𝒌 ≥

𝑨𝑮𝑴

√𝒙𝒚𝒛
𝟑 ⋅∑𝒙𝒌 = √𝟏

𝟑
⋅∑𝒙𝒌 =∑𝒙𝒌 
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with equality for 𝒙 = 𝒚 = 𝒛 = 𝟏. Let’s get back to the main problem. 

Using Lemma we obtain: 

𝑳𝑯𝑺 =∑
𝒙𝟐𝒏+𝟏

𝒙 + 𝒚 + 𝟏
=∑

𝒙𝟐𝒏+𝟐

𝒙𝟐 + 𝒙𝒚+ 𝒙
≥
𝑪𝑺 (∑ 𝒙𝒏+𝟏)𝟐

∑(𝒙𝟐 + 𝒙𝒚+ 𝒙)
=

(∑𝒙𝒏+𝟏)𝟐

∑𝒙𝟐 +∑𝒙𝒚 + ∑𝒙
≥
(𝟏)

 

≥
(𝟏) (∑𝒙𝒏+𝟏)𝟐

∑𝒙𝒏+𝟏 + ∑𝒙𝒏+𝟏 + ∑𝒙𝒏+𝟏
=
(∑𝒙𝒏+𝟏)𝟐

𝟑∑𝒙𝒏+𝟏
=
∑𝒙𝒏+𝟏

𝟑
≥
(𝟏)

𝟏 = 𝑹𝑯𝑫 

where (1) ⇔ ∑𝒙𝒏+𝟏 ≥ ∑𝒙𝟐 , ∑ 𝒙𝒏+𝟏 ≥ ∑𝒙𝟐 ≥ ∑𝒙𝒚 , ∑𝒙𝒏+𝟏 ≥ ∑𝒙 , ∑𝒙𝒏+𝟏 ≥ 𝟑, see 

Lemma. Equality holds if and only if 𝒙 = 𝒚 = 𝒛 = 𝟏. 

Note. 

For 𝒏 = 𝟐 we obtain the Proposed problem by Kostantinos Geronikolas in Mathematical 

Inequalities 2/2022:  If 𝒙, 𝒚, 𝒛 > 0, 𝑥𝑦𝑧 = 1 then: 

∑
𝒙𝟓

𝒙 + 𝒚 + 𝟏
≥ 𝟏 

Konstantinos Geronikolas - Greece 

JP.578 If 𝒙, 𝒚, 𝒛 > 0 and 𝒏 ∈ ℕ, 𝒏 ≥ 𝟐, in 𝚫𝑨𝑩𝑪 holds: 

∑
𝒙𝒏𝒂𝟐𝒏−𝟏

(𝒚 + 𝒛)𝒏
≥
√𝟑

𝟐𝒓
(𝟔𝒓𝟐)𝒏 

Proposed by Marin Chirciu – Romania  

Solution by proposer 

Lemma: 

If 𝒙, 𝒚, 𝒛 > 0 and 𝒏 ∈ ℕ, 𝒏 ≥ 𝟐, in 𝚫𝑨𝑩𝑪 holds: 

∑
𝒙𝒏𝒂𝟐𝒏−𝟏

(𝒚 + 𝒛)𝒏
≥
𝟗

𝟐𝒑
(
𝟐𝑭

√𝟑
)
𝒏

 

Proof: 

∑
𝒙𝒏𝒂𝟐𝒏−𝟏

(𝒚 + 𝒛)𝒏
=∑

(
𝒙

𝒚+ 𝒛𝒂
𝟐)

𝒏

𝒂
≥

𝑯𝒐𝒍𝒅𝒆𝒓 (∑
𝒙

𝒚 + 𝒛𝒂
𝟐)

𝒏

𝟑𝒏−𝟐 ∑𝒂
≥

𝑻𝒔𝒊𝒏𝒕𝒔𝒊𝒇𝒂𝒔 (𝟐√𝟑𝑭)
𝒏

𝟑𝒏−𝟐 ⋅ 𝟐𝒑
= 

=
𝟗

𝟐𝒑
(
𝟐√𝟑𝑭

𝟑
)

𝒏

=
𝟗

𝟐𝒑
(
𝟐𝑭

√𝟑
)
𝒏
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Let’s get back to the main problem. Using the Lemma we obtain: 

𝑳𝑯𝑺 =∑
𝒙𝟐𝒏𝒂𝟐𝒏+𝟏

(𝒚 + 𝒛)𝟐𝒏
≥

𝑳𝒆𝒎𝒎𝒂 𝟗

𝟐𝒑
(
𝟐𝑭

√𝟑
)
𝒏

=
𝟗

𝟐𝒑
⋅
𝟐𝒏𝒑𝒏𝒓𝒏

(√𝟑)
𝒏 =

𝟗

𝟐
⋅
𝟐𝒏𝒑𝒏−𝟏𝒓𝒏

(√𝟑)
𝒏 ≥ 

≥
𝑴𝒊𝒕𝒓𝒊𝒏𝒐𝒗𝒊𝒄 𝟗

𝟐
⋅
𝟐𝒏(𝟑√𝟑𝒓)

𝒏−𝟏
𝒓𝒏

(√𝟑)
𝒏 = 

=
𝟑𝟐

𝟐
⋅
𝟐𝒏(𝟑𝒓)𝒏−𝟏𝒓𝒏

√𝟑
=
𝟑√𝟑

𝟐
⋅
𝟐𝒏 ⋅ 𝟑𝒏𝒓𝒏−𝟏𝒓𝒏

𝟑
=
√𝟑

𝟐
⋅ 𝟔𝒏 ⋅ 𝒓𝟐𝒏−𝟏 =

√𝟑

𝟐𝒓
(𝟔𝒓𝟐)𝒏 = 𝑹𝑯𝑺 

Equality holds if and only if the triangle is equilateral. We have used above: 

Lemma Tsintsifas:  

If 𝒙, 𝒚, 𝒛 > 0 then in 𝚫𝑨𝑩𝑪 holds: 

∑
𝒙

𝒚+ 𝒛
𝒂𝟐 ≥ 𝟐√𝟑𝑭 

Proof:  

 ∑
𝒙

𝒚+𝒛
𝒂𝟐 = ∑(

𝒙

𝒚+𝒛
+ 𝟏 − 𝟏)𝒂𝟐 = ∑

𝒙+𝒚+𝒛

𝒚+𝒛
𝒂𝟐 −∑𝒂𝟐 ≥

𝑩𝒆𝒓𝒈𝒔𝒕𝒓𝒐𝒎

 

≥ (𝒙 + 𝒚 + 𝒛)
(∑𝒂)𝟐

∑(𝒚 + 𝒛)
−∑𝒂𝟐 = (𝒙 + 𝒚 + 𝒛)

(𝟐𝒑)𝟐

𝟐(𝒙 + 𝒚 + 𝒛)
− 𝟐(𝒑𝟐 − 𝒓𝟐 − 𝟒𝑹𝒓) = 

= 𝟐𝒑𝟐 − 𝟐(𝒑𝟐 − 𝒓𝟐 − 𝟒𝑹𝒓) = 𝟐(𝒓𝟐 + 𝟒𝑹𝒓) = 𝟐𝒓(𝟒𝑹+ 𝒓). 

We have used above the known identities in the triangle: 

∑𝒂 = 𝟐𝒑 and ∑𝒂𝟐 = 𝟐(𝒑𝟐 − 𝒓𝟐 − 𝟒𝑹𝒓) 

It remains to prove that:  𝟐𝒓(𝟒𝑹 + 𝒓) ≥ 𝟐√𝟑𝑺 ⇔ 𝒓(𝟒𝑹+ 𝒓) ≥ √𝟑𝒓𝒑 ⇔ 𝟒𝑹 + 𝒓 ≥ 𝒑√𝟑, 

which is Doucet’s inequality.Equality holds if and only if the triangle is equilateral. 

 

JP.579 Solve for real numbers: 

{
 
 

 
 
𝒙𝒚(𝒙𝟑 − 𝒚𝟑) + 𝒚𝒛(𝒚𝟑 − 𝒛𝟑) + 𝒛𝒙(𝒛𝟑 − 𝒙𝟑)

𝒙𝒚(𝒙 − 𝒚) + 𝒚𝒛(𝒚 − 𝒛) + 𝒛𝒙(𝒛 − 𝒙)
= 𝟓𝟓

𝒙𝟑 + 𝒚𝟑 + 𝒛𝟑 = 𝟗𝟗

𝒙𝒚(𝒙𝟑 − 𝒚𝟑) + 𝒚𝒛(𝒚𝟑 − 𝒛𝟑) + 𝒛𝒙(𝒛𝟑 − 𝒙𝟑)

𝒙𝒚(𝒙𝟐 − 𝒚𝟐) + 𝒚𝒛(𝒚𝟐 − 𝒛𝟐) + 𝒛𝒙(𝒛𝟐 − 𝒙𝟐)
=
𝟓𝟓

𝟗

 



 
www.ssmrmh.ro 

13 39-RMM WINTER EDITION 2025-SOLUTIONS 

 

Proposed by Daniel Sitaru – Romania  

Solution by proposer 

Denote: 𝑺𝟏 = 𝒙 + 𝒚 + 𝒛; 𝑺𝟐 = 𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙; 𝑺𝟑 = 𝒙𝒚𝒛. 

𝒙𝒚(𝒙𝟑 − 𝒚𝟑) + 𝒚𝒛(𝒚𝟑 − 𝒛𝟑) + 𝒛𝒙(𝒛𝟑 − 𝒙𝟑)

𝒙𝒚(𝒙 − 𝒚) + 𝒚𝒛(𝒚 − 𝒛) + 𝒛𝒙(𝒛 − 𝒙)
= 𝟓𝟓 

(𝒙 − 𝒚)(𝒚 − 𝒛)(𝒛 − 𝒙)(𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 + 𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙)

(𝒙 − 𝒚)(𝒚 − 𝒛)(𝒛 − 𝒙)
= 𝟓𝟓 

𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 + 𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙 = 𝟓𝟓, 𝑺𝟏
𝟐 − 𝟐𝑺𝟐 + 𝑺𝟐 = 𝟓𝟓 ⇒ 𝑺𝟏

𝟐 + 𝑺𝟐 = 𝟓𝟓 

𝒙𝒚(𝒙𝟑 − 𝒚𝟑) + 𝒚𝒛(𝒚𝟑 − 𝒛𝟑) + 𝒛𝒙(𝒛𝟑 − 𝒙𝟑)

𝒙𝒚(𝒙𝟐 − 𝒚𝟐) + 𝒚𝒛(𝒚𝟐 − 𝒛𝟐) + 𝒛𝒙(𝒛𝟐 − 𝒙𝟐)
=
𝟓𝟓

𝟗
 

𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 + 𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙

𝒙 + 𝒚 + 𝒛
=
𝟓𝟓

𝟗
 

𝑺𝟏
𝟐 − 𝑺𝟐
𝑺𝟏

=
𝟓𝟓

𝟗
⇒
𝟓𝟓

𝑺𝟏
=
𝟓𝟓

𝟗
⇒ 𝑺𝟏 = 𝟗 

𝑺𝟏
𝟐 − 𝑺𝟐 = 𝟓𝟓 ⇒ 𝟗𝟐 − 𝑺𝟐 = 𝟓𝟓 ⇒ 𝟖𝟏 − 𝑺𝟐 = 𝟓𝟓 ⇒ 𝑺𝟐 = 𝟐𝟔 

𝒙𝟑 + 𝒚𝟑 + 𝒛𝟑 = 𝟗𝟗, 𝑺𝟏(𝑺𝟏
𝟐 − 𝟑𝑺𝟐) + 𝟑𝑺𝟑 = 𝟗𝟗 

𝟗(𝟖𝟏 − 𝟑 ⋅ 𝟐𝟔) + 𝟑𝑺𝟑 = 𝟗𝟗 ⇒ 𝟗(𝟖𝟏 − 𝟕𝟖) + 𝟑𝑺𝟑 = 𝟗𝟗 

𝟑𝑺𝟑 = 𝟗𝟗 − 𝟐𝟕 ⇒ 𝑺𝟑 = 𝟑𝟑 − 𝟗 ⇒ 𝑺𝟑 = 𝟐𝟒 

Let be the equation with roots 𝒙, 𝒚, 𝒛: 

𝒖𝟑 − 𝑺𝟏𝒖
𝟐 + 𝑺𝟐𝒖 − 𝑺𝟑 = 𝟎 

𝒖𝟑 − 𝟗𝒖𝟐 + 𝟐𝟔𝒖 − 𝟐𝟓 = 𝟎 

(𝒖 − 𝟐)(𝒖 − 𝟑)(𝒖 − 𝟒) = 𝟎 ⇒ 𝒖𝟏 = 𝟐;𝒖𝟐 = 𝟑;𝒖𝟑 = 𝟒 

Solutions: (𝒙, 𝒚, 𝒛) = (𝟐, 𝟑, 𝟒) and permutations. 

JP.580 If 𝒂, 𝒃 ≥ 𝟎; 𝒙 ∈ (𝟎,
𝝅

𝟐
) then: 

[𝟐𝒂 + 𝐬𝐢𝐧𝟐 𝒙] + [𝟐𝒃 + 𝐜𝐨𝐬𝟐 𝒙]

[𝟐𝒂 + 𝟐𝒃]
+
[𝟐𝒃 + 𝐬𝐢𝐧𝟐 𝒙] + [𝟐𝒄 + 𝐜𝐨𝐬𝟐 𝒙]

[𝟐𝒃 + 𝟐𝒄]
+
[𝟐𝒄 + 𝐬𝐢𝐧𝟐 𝒙] + [𝟐𝒂 + 𝐜𝐨𝐬𝟐 𝒙]

[𝟐𝒄 + 𝟐𝒂]
≥ 𝟑 

[*] – great integer function. 

Proposed by Daniel Sitaru – Romania  

Solution by proposer 
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𝟐𝒂 + 𝐬𝐢𝐧𝟐 𝒙 − 𝟏 < [𝟐𝒂 + 𝐬𝐢𝐧𝟐 𝒙] 

𝟐𝒃 + 𝐜𝐨𝐬𝟐 𝒙 − 𝟏 < [𝟐𝒃 + 𝐜𝐨𝐬𝟐 𝒙] 

By adding: 

𝟐𝒂 + 𝟐𝒃 + 𝐬𝐢𝐧𝟐 𝒙 + 𝐜𝐨𝐬𝟐 𝒙 − 𝟐 < [𝟐𝒂 + 𝐬𝐢𝐧𝟐 𝒙] + [𝟐𝒃 + 𝐜𝐨𝐬𝟐 𝒙] 

𝟐𝒂 + 𝟐𝒃 + 𝟏 − 𝟐 < [𝟐𝒂 + 𝐬𝐢𝐧𝟐 𝒙] + [𝟐𝒃 + 𝐜𝐨𝐬𝟐 𝒙] 

𝟐𝒂 + 𝟐𝒃 − 𝟏 < [𝟐𝒂 + 𝐬𝐢𝐧𝟐 𝒙] + [𝟐𝒃 + 𝐜𝐨𝐬𝟐 𝒙] 

[𝟐𝒂 + 𝟐𝒃 − 𝟏] < [[𝟐𝒂 + 𝐬𝐢𝐧𝟐 𝒙] + [𝟐𝒃 + 𝐜𝐨𝐬𝟐 𝒙]] 

[𝟐𝒂 + 𝟐𝒃] ≤ [𝟐𝒂 + 𝐬𝐢𝐧𝟐 𝒙] + [𝟐𝒃 + 𝐜𝐨𝐬𝟐 𝒙] 

[𝟐𝒂+𝐬𝐢𝐧𝟐 𝒙]+[𝟐𝒃+𝐜𝐨𝐬𝟐 𝒙]

[𝟐𝒂+𝟐𝒃]
≥ 𝟏           (1) 

Analogous: 

[𝟐𝒃+𝐬𝐢𝐧𝟐 𝒙]+[𝟐𝒄+𝐜𝐨𝐬𝟐 𝒙]

[𝟐𝒃+𝟐𝒄]
≥ 𝟏       (2) 

[𝟐𝒄+𝐬𝐢𝐧𝟐 𝒙]+[𝟐𝒂+𝐜𝐨𝐬𝟐 𝒙]

[𝟐𝒄+𝟐𝒂]
≥ 𝟏       (3) 

By adding (1); (2); (3): 

 

[𝟐𝒂 + 𝐬𝐢𝐧𝟐 𝒙] + [𝟐𝒃 + 𝐜𝐨𝐬𝟐 𝒙]

[𝟐𝒂 + 𝟐𝒃]
+
[𝟐𝒃 + 𝐬𝐢𝐧𝟐 𝒙] + [𝟐𝒄 + 𝐜𝐨𝐬𝟐 𝒙]

[𝟐𝒃 + 𝟐𝒄]
+ 

+
[𝟐𝒄 + 𝐬𝐢𝐧𝟐 𝒙] + [𝟐𝒂 + 𝐜𝐨𝐬𝟐 𝒙]

[𝟐𝒄 + 𝟐𝒂]
≥ 𝟑 

JP.581 If 𝒙, 𝒚, 𝒛 ≥ 𝟎 then: 

[𝟑𝒙] ⋅ [𝟑𝒚]

[𝟑𝒙+𝒚]
+
[𝟑𝒚] ⋅ [𝟑𝒛]

[𝟑𝒚+𝒛]
+
[𝟑𝒛] ⋅ [𝟑𝒙]

[𝟑𝒛+𝒙]
≤ 𝟑 

[∗] - great integer function. 

Proposed by Daniel Sitaru – Romania  

Solution by proposer 

Lemma: If 𝒂, 𝒃 ∈ [𝟎,∞) then: 

[𝒂] ⋅ [𝒃] ≤ [𝒂 ⋅ 𝒃]      (1) 
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Proof: 

[𝒂] ≤ 𝒂; [𝒃] ≤ 𝒃 ⇒ [𝒂] ⋅ [𝒃] ≤ 𝒂𝒃 ⇒ [[𝒂] ⋅ [𝒃]] ≤ [𝒂 ⋅ 𝒃] ⇒ [𝒂] ⋅ [𝒃] ≤ [𝒂 ⋅ 𝒃] 

Back to the problem: 

We take in (1): 𝒂 = 𝟑𝒙; 𝒃 = 𝟑𝒚 

[𝟑𝒙] ⋅ [𝟑𝒚] ≤ [𝟑𝒙 ⋅ 𝟑𝒚] ⇒
[𝟑𝒙]⋅[𝟑𝒚]

[𝟑𝒙+𝒚]
≤ 𝟏     (2) 

Analogous: 

[𝟑𝒚]⋅[𝟑𝒛]

[𝟑𝒚+𝒛]
≤ 𝟏           (3) 

[𝟑𝒛]⋅[𝟑𝒙]

[𝟑𝒛+𝒙]
≤ 𝟏        (4) 

By adding (2); (3); (4): 

[𝟑𝒙] ⋅ [𝟑𝒚]

[𝟑𝒙+𝒚]
+
[𝟑𝒚] ⋅ [𝟑𝒛]

[𝟑𝒚+𝒛]
+
[𝟑𝒛] ⋅ [𝟑𝒙]

[𝟑𝒛+𝒙]
≤ 𝟑 

Equality holds for 𝒙, 𝒚, 𝒛 ∈ ℕ. 

 

JP.582 In acute 𝚫𝑨𝑩𝑪;𝑨𝑨′, 𝑩𝑩′, 𝑪𝑪′ - altitudes; 𝑯 – orthocenter;  

𝒎𝒂, 𝒎𝒃, 𝒎𝒄 – medians; 𝒓 – inradii. Prove that: 

𝒎𝒂
𝟐

𝑯𝑨′
+
𝒎𝒃
𝟐

𝑯𝑩′
+
𝒎𝒄
𝟐

𝑯𝑪′
≥
𝟖𝟏𝒓𝟐(𝐭𝐚𝐧 𝑨 + 𝐭𝐚𝐧𝑩 + 𝐭𝐚𝐧𝑪)

𝒉𝒂 𝐭𝐚𝐧𝑨𝒉𝒃 𝐭𝐚𝐧𝑩 + 𝒉𝒄 𝐭𝐚𝐧 𝑪
 

Proposed by Daniel Sitaru – Romania  

Solution 1 by Soumava Chakraborty-Kolkata-India 

𝐅𝐢𝐫𝐬𝐭𝒍𝐲,∑𝐦𝒂

𝐜𝐲𝐜

≥∑𝐡𝒂
𝐜𝐲𝐜

=
𝐬𝟐 + 𝟒𝐑𝐫 + 𝐫𝟐

𝟐𝐑
− 𝟗𝐫 + 𝟗𝐫 =

𝐬𝟐 − 𝟏𝟒𝐑𝐫 + 𝐫𝟐

𝟐𝐑
+ 𝟗𝐫 

=
𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐 + 𝟐𝐫(𝐑 − 𝟐𝐫)

𝟐𝐑
+ 𝟗𝐫 ≥ 𝟗𝐫 

(∵ 𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐 ≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

𝟎 𝒂𝐧𝐝 𝟐𝐫(𝐑 − 𝟐𝐫) ≥
𝐄𝐮𝐥𝐞𝐫

𝟎) ∴ ∑𝐦𝒂

𝐜𝐲𝐜

≥ 𝟗𝐫 → (𝟏) 

𝐍𝐨𝐰,𝐇𝐀′ = 𝐀𝐀′ − 𝐀𝐇 = 𝐡𝒂 − 𝟐𝐑𝐜𝐨𝐬𝐀 =
𝟒𝐑𝟐 𝐬𝐢𝐧𝐁 𝐬𝐢𝐧𝐂

𝟐𝐑
− 𝟐𝐑 𝐜𝐨𝐬𝐀 

= 𝐑(𝐜𝐨𝐬(𝐁 − 𝐂) − 𝐜𝐨𝐬(𝐁 + 𝐂)) − 𝟐𝐑𝐜𝐨𝐬𝐀 = 𝐑(𝐜𝐨𝐬(𝐁 − 𝐂) + 𝐜𝐨𝐬𝐀) − 𝟐𝐑𝐜𝐨𝐬 𝐀 
= 𝐑(𝐜𝐨𝐬(𝐁 − 𝐂) − 𝐜𝐨𝐬𝐀) = 𝐑(𝐜𝐨𝐬(𝐁 − 𝐂) + 𝐜𝐨𝐬(𝐁 + 𝐂)) = 𝟐𝐑𝐜𝐨𝐬𝐁 𝐜𝐨𝐬 𝐂 ∴ 
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𝐇𝐀′ = 𝟐𝐑𝐜𝐨𝐬𝐁 𝐜𝐨𝐬 𝐂  𝒂𝐧𝐝 𝒂𝐧𝒂𝒍𝐨𝐠𝐬 ⇒ 𝐇𝐀′ +𝐇𝐁′ +𝐇𝐂′ = 𝟐𝐑∑𝐜𝐨𝐬𝐁 𝐜𝐨𝐬𝐂

𝐜𝐲𝐜

→ (𝟐) 

𝐀𝐠𝒂𝐢𝐧,
𝟖𝟏𝐫𝟐(𝐭𝒂𝐧𝐀 + 𝐭𝒂𝐧𝐁 + 𝐭𝒂𝐧𝐂)

𝐡𝒂 𝐭𝒂𝐧𝐀 + 𝐡𝐛 𝐭𝒂𝐧𝐁 + 𝐡𝐜 𝐭𝒂𝐧𝐂
=
𝟖𝟏𝐫𝟐. 𝐭𝒂𝐧𝐀 𝐭𝒂𝐧𝐁 𝐭𝒂𝐧𝐂

∑ (
𝟐𝐫𝐬

𝟐𝐑𝐬𝐢𝐧 𝐀 .
𝐬𝐢𝐧 𝐀
𝐜𝐨𝐬 𝐀)𝐜𝐲𝐜

=

𝟖𝟏𝐫𝟐.
∏ 𝐬𝐢𝐧𝐀𝐜𝐲𝐜

∏ 𝐜𝐨𝐬𝐀𝐜𝐲𝐜

𝐫𝐬
𝐑 .
∑ 𝐜𝐨𝐬 𝐁𝐜𝐨𝐬 𝐂𝐜𝐲𝐜

∏ 𝐜𝐨𝐬𝐀𝐜𝐲𝐜

 

=
𝟖𝟏𝐫𝟐.

𝟒𝐑𝐫𝐬
𝟖𝐑𝟑

𝐫𝐬
𝐑 .

∑ 𝐜𝐨𝐬𝐁 𝐜𝐨𝐬 𝐂𝐜𝐲𝐜

=
𝟖𝟏𝐫𝟐

𝟐𝐑∑ 𝐜𝐨𝐬𝐁 𝐜𝐨𝐬 𝐂𝐜𝐲𝐜
 

∴
𝟖𝟏𝐫𝟐(𝐭𝒂𝐧𝐀 + 𝐭𝒂𝐧𝐁 + 𝐭𝒂𝐧 𝐂)

𝐡𝒂 𝐭𝒂𝐧𝐀 + 𝐡𝐛 𝐭𝒂𝐧𝐁 + 𝐡𝐜 𝐭𝒂𝐧𝐂
=

𝟖𝟏𝐫𝟐

𝟐𝐑∑ 𝐜𝐨𝐬𝐁 𝐜𝐨𝐬 𝐂𝐜𝐲𝐜
→ (𝟑) 𝒂𝐧𝐝 𝐟𝐢𝐧𝒂𝒍𝒍𝐲, 

𝐦𝒂
𝟐

𝐇𝐀′
+
𝐦𝐛
𝟐

𝐇𝐁′
+
𝐦𝐜
𝟐

𝐇𝐂′
≥

𝐁𝐞𝐫𝐠𝐬𝐭𝐫𝐨𝐦 (∑ 𝐦𝒂𝐜𝐲𝐜 )
𝟐

𝐇𝐀′ +𝐇𝐁′ +𝐇𝐂′
≥

𝐯𝐢𝒂 (𝟏) 𝒂𝐧𝐝 (𝟐)

 

𝟖𝟏𝐫𝟐

𝟐𝐑∑ 𝐜𝐨𝐬 𝐁𝐜𝐨𝐬 𝐂𝐜𝐲𝐜
=

𝐯𝐢𝒂 (𝟑) 𝟖𝟏𝐫𝟐(𝐭𝒂𝐧𝐀 + 𝐭𝒂𝐧𝐁 + 𝐭𝒂𝐧𝐂)

𝐡𝒂 𝐭𝒂𝐧𝐀 + 𝐡𝐛 𝐭𝒂𝐧𝐁 + 𝐡𝐜 𝐭𝒂𝐧 𝐂
 

∴
𝐦𝒂
𝟐

𝐇𝐀′
+
𝐦𝐛
𝟐

𝐇𝐁′
+
𝐦𝐜
𝟐

𝐇𝐂′
≥
𝟖𝟏𝐫𝟐(𝐭𝒂𝐧𝐀 + 𝐭𝒂𝐧𝐁 + 𝐭𝒂𝐧 𝐂)

𝐡𝒂 𝐭𝒂𝐧𝐀 + 𝐡𝐛 𝐭𝒂𝐧𝐁 + 𝐡𝐜 𝐭𝒂𝐧𝐂
∀ ∆ 𝐀𝐁𝐂, 

′′ = ′′ 𝐢𝐟𝐟 ∆ 𝐀𝐁𝐂 𝐢𝐬 𝐞𝐪𝐮𝐢𝒍𝒂𝐭𝐞𝐫𝒂𝒍 (𝐐𝐄𝐃) 
 

Solution 2 by proposer 

 

𝑨′𝑩 = 𝑨𝑩𝐜𝐨𝐬𝑩 = 𝒄 𝐜𝐨𝐬𝑩 

𝒎(∠𝑩𝑯𝑨′) = 𝒎(∠𝑨𝑯𝑩′) = 𝟗𝟎° − 𝒎(∠𝑨′𝑨𝑪) = 𝟗𝟎° − (𝟗𝟎° − 𝒎(𝑪̂)) = 𝒎(𝑪̂) 

𝐭𝐚𝐧(∠𝑩𝑯𝑨′) =
𝑨′𝑩

𝑯𝑨′
⇒ 𝐭𝐚𝐧 𝑪 =

𝑨′𝑩

𝑯𝑨′
, 𝑯𝑨′ =

𝑨′𝑩

𝐭𝐚𝐧𝑪
=
𝒄 𝐜𝐨𝐬𝑩

𝐭𝐚𝐧 𝑪
=
𝟐𝑹𝐬𝐢𝐧 𝑪 ⋅ 𝐜𝐨𝐬 𝑩

𝐬𝐢𝐧𝑪
𝐜𝐨𝐬𝑪

 

𝑯𝑨′ = 𝟐𝑹𝐜𝐨𝐬𝑩 𝐜𝐨𝐬𝑪 , 𝑯𝑨′ = 𝟐𝑹 ⋅
𝟏

𝟏
𝐜𝐨𝐬𝑩 𝐜𝐨𝐬𝑪

=
𝟐𝑹𝐬𝐢𝐧𝑩𝐬𝐢𝐧 𝑪

𝐬𝐢𝐧𝑩 𝐬𝐢𝐧𝑪
𝐜𝐨𝐬𝑩 𝐜𝐨𝐬𝑪

 

𝑯𝑨′ =
𝟐𝑹𝐬𝐢𝐧𝑩𝐬𝐢𝐧 𝑪

𝐭𝐚𝐧𝑩 𝐭𝐚𝐧 𝑪
=
𝟐𝑹𝒂𝐬𝐢𝐧𝑩𝐬𝐢𝐧 𝑪

𝒂 𝐭𝐚𝐧𝑩 𝐭𝐚𝐧 𝑪
, 𝑯𝑨′ =

𝟐𝑹 ⋅ 𝟐𝑹𝐬𝐢𝐧 𝑨 ⋅ 𝐬𝐢𝐧𝑩 𝐬𝐢𝐧𝑪

𝒂 𝐭𝐚𝐧𝑩 𝐭𝐚𝐧 𝑪
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𝑯𝑨′ =
𝟐 ⋅ 𝟐𝑹𝟐 𝐬𝐢𝐧 𝑨𝐬𝐢𝐧𝑩 𝐬𝐢𝐧𝑪

𝒂 𝐭𝐚𝐧𝑩 𝐭𝐚𝐧 𝑪
=

𝟐𝑭

𝒂 𝐭𝐚𝐧𝑩 𝐭𝐚𝐧 𝑪
 

𝑯𝑨′ =
𝟐 ⋅
𝒂 ⋅ 𝒉𝒂
𝟐

𝒂 𝐭𝐚𝐧𝑩 𝐭𝐚𝐧𝑪
=

𝒉𝒂
𝐭𝐚𝐧𝑩 𝐭𝐚𝐧 𝑪

 

𝑯𝑩′ =
𝒉𝒃

𝐭𝐚𝐧 𝑪 𝐭𝐚𝐧𝑨
;𝑯𝑪′ =

𝒉𝒄
𝐭𝐚𝐧 𝑨 𝐭𝐚𝐧𝑩

 

𝒎𝒂
𝟐

𝑯𝑨′
+
𝒎𝒃
𝟐

𝑯𝑩′
+
𝒎𝒄
𝟐

𝑯𝑪′
≥

𝑩𝑬𝑹𝑮𝑺𝑻𝑹𝑶𝑴 (𝒎𝒂 +𝒎𝒃 +𝒎𝒄)
𝟐

𝑯𝑨′ + 𝑯𝑩′ +𝑯𝑪′
= 

=
(𝒎𝒂 +𝒎𝒃 +𝒎𝒄)

𝟐

𝒉𝒂
𝐭𝐚𝐧𝑩 𝐭𝐚𝐧𝑪 +

𝒉𝒃
𝐭𝐚𝐧 𝑪 𝐭𝐚𝐧𝑨 +

𝒉𝒄
𝐭𝐚𝐧 𝑨 𝐭𝐚𝐧𝑩

= 

=
(𝒎𝒂 +𝒎𝒃 +𝒎𝒄)

𝟐 ⋅ 𝐭𝐚𝐧 𝑨 𝐭𝐚𝐧𝑩 𝐭𝐚𝐧𝑪

𝒉𝒂 𝐭𝐚𝐧 𝑨 + 𝒉𝒃 𝐭𝐚𝐧𝑩 + 𝒉𝒄 𝐭𝐚𝐧 𝑪
≤

𝑮𝑶𝑻𝑴𝑨𝑵 (𝟗𝒓)𝟐 ⋅ 𝐭𝐚𝐧 𝑨 𝐭𝐚𝐧𝑩 𝐭𝐚𝐧 𝑪

𝒉𝒂 𝐭𝐚𝐧 𝑨 + 𝒉𝒃 𝐭𝐚𝐧𝑩 + 𝒉𝒄 𝐭𝐚𝐧 𝑪
= 

=
𝟖𝟏𝒓𝟐(𝐭𝐚𝐧𝑨 + 𝐭𝐚𝐧𝑩 + 𝐭𝐚𝐧 𝑪)

𝒉𝒂 𝐭𝐚𝐧 𝑨 + 𝒉𝒃 𝐭𝐚𝐧𝑩 + 𝒉𝒄 𝐭𝐚𝐧 𝑪
 

Equality holds for 𝒂 = 𝒃 = 𝒄. 

JP.583 In 𝚫𝑨𝑩𝑪, 𝒂, 𝒃, 𝒄 – sides, 𝒉𝒂, 𝒉𝒃, 𝒉𝒄 – altitudes, 𝒔 – semiperimeter, the 

following relationship holds: 

𝒉𝒂
𝟐

𝒃𝟐 + 𝒄𝟐
+

𝒉𝒃
𝟐

𝒄𝟐 + 𝒂𝟐
+

𝒉𝒄
𝟐

𝒂𝟐 + 𝒃𝟐
≤
𝒔

𝟒
(
𝟏

𝒂
+
𝟏

𝒃
+
𝟏

𝒄
) 

Proposed by Daniel Sitaru – Romania  

Solution 1 by Tapas Das-India 

(𝒂 + 𝒃 + 𝒄) (
𝟏

𝒂
+
𝟏

𝒃
+
𝟏

𝒄
) ≥
𝑪−𝑺

 𝟗 𝒐𝒓, (
𝟏

𝒂
+
𝟏

𝒃
+
𝟏

𝒄
) ≥

𝟗

𝒂 + 𝒃 + 𝒄
 (𝟏) 

 

∑
𝒉𝒂
𝟐

𝒃𝟐 + 𝒄𝟐
≤∑

𝒎𝒂
𝟐

𝒃𝟐 + 𝒄𝟐
=
𝟏

𝟒
∑

𝟐𝒃𝟐 + 𝟐𝒄𝟐 − 𝒂𝟐

𝒃𝟐 + 𝒄𝟐
=
𝟏

𝟒
∑(𝟐 −

𝒂𝟐

𝒃𝟐 + 𝒄𝟐
) = 

 

=
𝟔

𝟒
−
𝟏

𝟒
∑(

𝒂𝟐

𝒃𝟐 + 𝒄𝟐
) ≤
𝑵𝒆𝒔𝒃𝒊𝒕𝒕 𝟔

𝟒
−
𝟏

𝟒
.
𝟑

𝟐
=
𝟗

𝟖
=
𝒔

𝟒
.
𝟗

𝟐𝒔
= 

 

=
𝒔

𝟒
.

𝟗

𝒂 + 𝒃 + 𝒄
≤
(𝟏) 𝒔

𝟒
(
𝟏

𝒂
+
𝟏

𝒃
+
𝟏

𝒄
)  
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Equality  holds  for an equilateral triangle. 
 

Solution 2 by Marin Chirciu-Romania 

𝑳𝑯𝑺 =∑
𝒉𝒂
𝟐

𝒃𝟐 + 𝒄𝟐
≤

𝑨𝑴−𝑮𝑴
 ∑

𝒉𝒂
𝟐

𝟐𝒃𝒄
=
𝟏

𝟐
∑

𝒉𝒂
𝟐

𝒃𝒄
=
𝟏

𝟐
⋅
𝒔𝒓

𝑹
∑

𝟏

𝒂
=
𝒔𝒓

𝟐𝑹
∑

𝟏

𝒂
≤

𝑬𝒖𝒍𝒆𝒓
 

≤
𝑬𝒖𝒍𝒆𝒓 𝒔

𝟒
(
𝟏

𝒂
+
𝟏

𝒃
+
𝟏

𝒄
) = 𝑹𝑯𝑺. 

We have used above: 

∑
𝒉𝒂
𝟐

𝒃𝒄
=

𝟒𝒑𝒓

𝑹
∑
𝟏

𝒂
, see ∑

𝒉𝒂
𝟐

𝒃𝒄
= ∑

𝟒𝑭𝟐

𝒂𝟐

𝒃𝒄
=

𝟒𝑭𝟐

𝒂𝒃𝒄
∑
𝟏

𝒂
=

𝟒𝒔𝟐𝒓𝟐

𝟒𝑹𝒓𝒔
∑
𝟏

𝒂
=

𝒔𝒓

𝑹
∑
𝟏

𝒂
 

Equality holds if and only if the triangle is equilateral.Remark: The problem cand be 
strengthened and developed. 
 
In 𝚫𝑨𝑩𝑪: 

𝟗𝒓𝟐

𝟐𝑹𝟐
≤∑

𝒉𝒂
𝟐

𝒃𝟐 + 𝒄𝟐
≤
𝑭

𝟐𝑹
(
𝟏

𝒂
+
𝟏

𝒃
+
𝟏

𝒄
) 

Marin Chirciu  

 

Solution: Right hand inequality 

𝑳𝑯𝑺 =∑
𝒉𝒂
𝟐

𝒃𝟐 + 𝒄𝟐
≤

𝑨𝑴−𝑮𝑴
∑

𝒉𝒂
𝟐

𝟐𝒃𝒄
=
𝟏

𝟐
∑

𝒉𝒂
𝟐

𝒃𝒄
=
𝟏

𝟐
⋅
𝒔𝒓

𝑹
∑

𝟏

𝒂
=
𝒔𝒓

𝟐𝑹
∑

𝟏

𝒂
≤

𝑬𝒖𝒍𝒆𝒓
 

≤
𝑬𝒖𝒍𝒆𝒓 𝒔

𝟒
(
𝟏

𝒂
+
𝟏

𝒃
+
𝟏

𝒄
) = 𝑹𝑯𝑺. 

We have used above: 

∑
𝒉𝒂
𝟐

𝒃𝒄
=

𝟒𝒑𝒓

𝑹
∑
𝟏

𝒂
, see ∑

𝒉𝒂
𝟐

𝒃𝒄
= ∑

𝟒𝑭𝟐

𝒂𝟐

𝒃𝒄
=

𝟒𝑭𝟐

𝒂𝒃𝒄
∑
𝟏

𝒂
=

𝟒𝒔𝟐𝒓𝟐

𝟒𝑹𝒓𝒔
∑
𝟏

𝒂
=

𝒔𝒓

𝑹
∑
𝟏

𝒂
. 

Equality holds if and only if the triangle is equilateral. 

Left hand inequality 

∑
𝒉𝒂
𝟐

𝒃𝟐 + 𝒄𝟐
≥

𝑨𝑴−𝑮𝑴
𝟑√∏

𝒉𝒂𝟐

𝒃𝟐 + 𝒄𝟐

𝟑

= 𝟑√
∏𝒉𝒂𝟐

∏(𝒃𝟐 + 𝒄𝟐)

𝟑

≥ 𝟑√
𝟕𝟐𝟗𝒓𝟔

𝟐𝟏𝟔𝑹𝟔

𝟑

= 𝟑 ⋅
𝟗𝒓𝟐

𝟔𝑹𝟐
=
𝟗𝒓𝟐

𝟐𝑹𝟐
 

We have used above: 

1. ∏𝒉𝒂
𝟐 ≥ 𝟕𝟐𝟗𝒓𝟔, see ∏𝒉𝒂 =

𝟐𝒓𝟐𝒔𝟐

𝑹
≥

𝑪𝒐𝒔𝒏𝒊𝒕𝒂 & 𝑇𝑢𝑟𝑡𝑜𝑖𝑢
𝟐𝟕𝒓𝟑; 

2. ∏(𝒃𝟐 + 𝒄𝟐) ≤ 𝟐𝟏𝟔𝑹𝟔 
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see ∏(𝒃𝟐 + 𝒄𝟐) = 𝟐[𝒑𝟔 + 𝒑𝟒(𝒓𝟐 − 𝟏𝟐𝑹𝒓) + 𝒑𝟐𝒓𝟐(𝟒𝟎𝑹𝟐 + 𝟖𝑹𝒓 − 𝒓𝟐) − 𝒓𝟑(𝟒𝑹 + 𝒓)𝟑] ≤ 

≤ 𝟐𝟏𝟔𝑹𝟔 

Note: The right-hand inequality strengthens Problem JP.583 from RMM number 39, Winter 

2025. 

JP.583. In 𝚫𝑨𝑩𝑪: 

∑
𝒉𝒂
𝟐

𝒃𝟐 + 𝒄𝟐
≤
𝒔

𝟒
(
𝟏

𝒂
+
𝟏

𝒃
+
𝟏

𝒄
) 

Daniel Sitaru – Romania  

Remark: We can write the inequalities 

In 𝚫𝑨𝑩𝑪: 

𝟗𝒓𝟐

𝟐𝑹𝟐
≤∑

𝒉𝒂
𝟐

𝒃𝟐 + 𝒄𝟐
≤
𝑭

𝟐𝑹
(
𝟏

𝒂
+
𝟏

𝒃
+
𝟏

𝒄
) ≤

𝒔

𝟒
(
𝟏

𝒂
+
𝟏

𝒃
+
𝟏

𝒄
) 

Remark: In the same way: 

In 𝚫𝑨𝑩𝑪: 

𝟗𝒓𝟐

𝟐𝑹𝟐
≤∑

𝒓𝒂
𝟐

𝒃𝟐 + 𝒄𝟐
≤
𝟖𝑹𝟐 − 𝟐𝟑𝒓𝟐

𝟒𝑹𝒓
 

Marin Chirciu 

Solution: The right-hand inequality 

𝑳𝑯𝑺 =∑
𝒓𝒂
𝟐

𝒃𝟐 + 𝒄𝟐
≤

𝑨𝑴−𝑮𝑴
∑

𝒓𝒂
𝟐

𝟐𝒃𝒄
=
𝟏

𝟐
∑

𝒓𝒂
𝟐

𝒃𝒄
=
𝟏

𝟐
⋅
𝟖𝑹𝟐 + 𝟐𝑹𝒓 − 𝒑𝟐

𝟐𝑹𝒓
= 

=
𝟖𝑹𝟐 + 𝟐𝑹𝒓 − 𝒑𝟐

𝟒𝑹𝒓
≤

𝑮𝒆𝒓𝒓𝒆𝒕𝒔𝒆𝒏
 

≤
𝑮𝒆𝒓𝒓𝒆𝒕𝒔𝒆𝒏 𝟖𝑹𝟐 + 𝟐𝑹𝒓 − 𝟏𝟔𝑹𝒓 + 𝟓𝒓𝟐

𝟒𝑹𝒓
=
𝟖𝑹𝟐 − 𝟏𝟒𝑹𝒓 + 𝟓𝒓𝟐

𝟒𝑹𝒓
≤

𝑬𝒖𝒍𝒆𝒓 𝟖𝑹𝟐 − 𝟐𝟑𝒓𝟐

𝟒𝑹𝒓
 

We have used above: 

∑
𝒓𝒂
𝟐

𝒃𝒄
=
𝟖𝑹𝟐 + 𝟐𝑹𝒓 − 𝒑𝟐

𝟐𝑹𝒓
 

see ∑
𝒓𝒂
𝟐

𝒃𝒄
= ∑

𝑭𝟐

(𝒔−𝒂)𝟐

𝒃𝒄
= 𝑭𝟐 ∑

𝟏

𝒃𝒄(𝒔−𝒂)𝟐
= 𝒑𝟐𝒓𝟐

𝟖𝑹𝟐+𝟐𝑹𝒓−𝒑𝟐

𝟐𝑹𝒓𝟑𝒑𝟐
=

𝟖𝑹𝟐+𝟐𝑹𝒓−𝒑𝟐

𝟐𝑹𝒓
 

Equality holds if and only if the triangle is equilateral. 

Left hand inequality 
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∑
𝒓𝒂
𝟐

𝒃𝟐 + 𝒄𝟐
≥

𝑨𝑴−𝑮𝑴
𝟑√∏

𝒓𝒂𝟐

𝒃𝟐 + 𝒄𝟐

𝟑

= 𝟑√
∏𝒓𝒂𝟐

∏(𝒃𝟐 + 𝒄𝟐)

𝟑

≥ 𝟑√
𝟕𝟐𝟗𝑹𝟔

𝟐𝟏𝟔𝑹𝟔

𝟑

= 𝟑 ⋅
𝟗𝒓𝟐

𝟔𝑹𝟐
=
𝟗𝑹𝟐

𝟐𝑹𝟐
. 

We have used above: 

1. ∏𝒓𝒂
𝟐 ≥ 𝟕𝟐𝟗𝒓𝟔, see ∏𝒓𝒂 = 𝒓𝒑𝟐 ≥

𝑴𝒊𝒕𝒓𝒊𝒏𝒐𝒗𝒊𝒄𝒊
𝟐𝟕𝒓𝟑 

2. ∏(𝒃𝟐 + 𝒄𝟐) ≤ 𝟐𝟏𝟔𝑹𝟔 

see ∏(𝒃𝟐 + 𝒄𝟐) = 𝟐[𝒑𝟔 + 𝒑𝟒(𝒓𝟐 − 𝟏𝟐𝑹𝒓) + 𝒑𝟐𝒓𝟐(𝟒𝟎𝑹𝟐 + 𝟖𝑹𝒓 − 𝒓𝟐) − 𝒓𝟑(𝟒𝑹 + 𝒓)𝟑] ≤ 

≤ 𝟐𝟏𝟔𝑹𝟔 

Solution 3 by proposer 

Lemma 1: (BERGSTROM’S REVERSED INEQUALITY) 

If 𝒂, 𝒃, 𝒄, 𝒙, 𝒚, 𝒛 > 0 then: 

𝒙𝟐

𝒃𝟐+𝒄𝟐
+

𝒚𝟐

𝒄𝟐+𝒂𝟐
+

𝒛𝟐

𝒂𝟐+𝒃𝟐
≤

𝒙𝟐+𝒚𝟐

𝟒𝒄𝟐
+

𝒚𝟐+𝒛𝟐

𝟒𝒂𝟐
+

𝒛𝟐+𝒙𝟐

𝟒𝒃𝟐
      (1) 

Proof. 

Inequality (1) can be written: 

𝒙𝟐 + 𝒚𝟐

𝟒𝒄𝟐
+
𝒚𝟐 + 𝒛𝟐

𝟒𝒂𝟐
+
𝒛𝟐 + 𝒙𝟐

𝟒𝒃𝟐
−

𝒙𝟐

𝒃𝟐 + 𝒄𝟐
−

𝒚𝟐

𝒄𝟐 + 𝒂𝟐
−

𝒛𝟐

𝒂𝟐 + 𝒃𝟐
≥ 𝟎 

𝒙𝟐 (
𝟏

𝟒𝒃𝟐
+

𝟏

𝟒𝒄𝟐
−

𝟏

𝒃𝟐 + 𝒄𝟐
) + 𝒚𝟐 (

𝟏

𝟒𝒂𝟐
+

𝟏

𝟒𝒄𝟐
−

𝟏

𝒂𝟐 + 𝒄𝟐
) + 

+𝒛𝟐 (
𝟏

𝟒𝒃𝟐
+

𝟏

𝟒𝒂𝟐
−

𝟏

𝒂𝟐 + 𝒃𝟐
) ≥ 𝟎 

𝒙𝟐 ⋅
(𝒃𝟐 + 𝒄𝟐)𝟐 − 𝟒𝒃𝟐𝒄𝟐

𝟒𝒃𝟐𝒄𝟐(𝒃𝟐 + 𝒄𝟐)
+ 𝒚𝟐 ⋅

(𝒄𝟐 + 𝒂𝟐)𝟐 − 𝟒𝒂𝟐𝒄𝟐

𝟒𝒂𝟐𝒄𝟐(𝒂𝟐 + 𝒄𝟐)
+ 𝒛𝟐 ⋅

(𝒂𝟐 + 𝒃𝟐) − 𝟒𝒂𝟐𝒃𝟐

𝟒𝒂𝟐𝒃𝟐(𝒂𝟐 + 𝒃𝟐)
≥ 𝟎 

𝒙𝟐 ⋅
(𝒃𝟐 − 𝒄𝟐)𝟐

𝟒𝒃𝟐𝒄𝟐(𝒃𝟐 + 𝒄𝟐)
+ 𝒚𝟐 ⋅

(𝒄𝟐 − 𝒂𝟐)𝟐

𝟒𝒂𝟐𝒄𝟐(𝒂𝟐 + 𝒄𝟐)
+ 𝒛𝟐 ⋅

(𝒂𝟐 − 𝒃𝟐)𝟐

𝟒𝒂𝟐𝒃𝟐(𝒂𝟐 + 𝒃𝟐)
≥ 𝟎 

Equality holds for 𝒂 = 𝒃 = 𝒄. 

Lemma 2: (SANTALO’S INEQUALITY) 

If 𝚫𝑨𝑩𝑪 the following relationship holds: 

𝒉𝒂 ≤ √𝒔(𝒔 − 𝒂)               (2) 

Proof. 



 
www.ssmrmh.ro 

21 39-RMM WINTER EDITION 2025-SOLUTIONS 

 

𝒉𝒂 =
𝟐𝑭

𝒂
=
𝟐√𝒔(𝒔 − 𝒂)(𝒔 − 𝒃)(𝒔 − 𝒄)

𝒂
= 

= √(𝒔 − 𝒃)(𝒔 − 𝒄) ⋅
𝟐√𝒔(𝒔 − 𝒂)

𝒂
≤

𝑨𝑴−𝑮𝑴
 

≤
𝒔 − 𝒃 + 𝒔 − 𝒄

𝟐
⋅
𝟐√𝒔(𝒔 − 𝒂)

𝒂
=
𝟐𝒔 − 𝒃 − 𝒄

𝟐
⋅
𝟐√𝒔(𝒔 − 𝒂)

𝒂
= 

=
(𝒂 + 𝒃 + 𝒄 − 𝒃 − 𝒄)√𝒔(𝒔 − 𝒂)

𝒂
=
𝒂√𝒔(𝒔 − 𝒂)

𝒂
= √𝒔(𝒔 − 𝒂) 

Equality holds for 𝒂 = 𝒃 = 𝒄. 

Back to the problem: 

We take in (1): 𝒙 = 𝒉𝒂; 𝒚 = 𝒉𝒃; 𝒛 = 𝒉𝒄 

∑
𝒉𝒂
𝟐

𝒃𝟐 + 𝒄𝟐
𝒄𝒚𝒄

≤
(𝟏)

 ∑
𝒉𝒂
𝟐 + 𝒉𝒃

𝟐

𝟒𝒄𝟐
𝒄𝒚𝒄

≤
(𝟐)

∑
(√𝒔(𝒔 − 𝒂))

𝟐

+ (√𝒔(𝒔 − 𝒃))
𝟐

𝟒𝒄𝟐
𝒄𝒚𝒄

= 

=∑
𝒔(𝒔 − 𝒂) + 𝒔(𝒔 − 𝒃)

𝟒𝒄𝟐
𝒄𝒚𝒄

=∑
𝒔(𝒔 − 𝒂 + 𝒔 − 𝒃)

𝟒𝒄𝟐
𝒄𝒚𝒄

= 

=
𝒔

𝟒
∑

𝟐𝒔 − 𝒂 − 𝒃

𝒄𝟐
𝒄𝒚𝒄

=
𝒔

𝟒
∑

𝒂 + 𝒃 + 𝒄 − 𝒂 − 𝒃

𝒄𝟐
𝒄𝒚𝒄

=
𝒔

𝟒
∑

𝟏

𝒄
𝒄𝒚𝒄

=
𝒔

𝟒
(
𝟏

𝒂
+
𝟏

𝒃
+
𝟏

𝒄
) 

Equality holds for 𝒂 = 𝒃 = 𝒄. 

JP.584 Prove that in any triangle 𝑨𝑩𝑪 the following inequality holds: 

∑𝐜𝐨𝐬𝟑
𝑨

𝟐
𝐬𝐢𝐧

𝑩

𝟐
𝐬𝐢𝐧

𝑪

𝟐
𝒄𝒚𝒄

≥
𝟑

𝟏𝟔
∑𝐬𝐢𝐧 𝑨

𝒄𝒚𝒄

 

Proposed by Marian Ursărescu and Florică Anastase – Romania  

Solution 1 by Soumava Chakraborty-Kolkata-India 

∑𝐜𝐨𝐬𝟑
𝐀

𝟐
𝐬𝐢𝐧

𝐁

𝟐
𝐬𝐢𝐧

𝐂

𝟐
𝐜𝐲𝐜

=∑(𝐜𝐨𝐬𝟐
𝐀

𝟐
(𝐜𝐨𝐬

𝐀

𝟐
𝐬𝐢𝐧

𝐁

𝟐
𝐬𝐢𝐧

𝐂

𝟐
))

𝐜𝐲𝐜

 

= ∑(
𝐬(𝐬 − 𝒂)

𝐛𝐜
.
𝐬 − 𝒂

𝟒𝐑
)

𝐜𝐲𝐜

=
𝐬

𝟒𝐑. 𝟒𝐑𝐫𝐬
.∑𝒂(𝐬 − 𝒂)𝟐

𝐜𝐲𝐜
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=
𝟏

𝟏𝟔𝐑𝟐𝐫
(𝐬𝟐∑𝒂

𝐜𝐲𝐜

− 𝟐𝐬∑𝒂𝟐

𝐜𝐲𝐜

+∑𝒂𝟑

𝐜𝐲𝐜

) 

=
𝟏

𝟏𝟔𝐑𝟐𝐫
(𝟐𝐬𝟑 − 𝟒𝐬(𝐬𝟐 − 𝟒𝐑𝐫 − 𝐫𝟐) + 𝟐𝐬(𝐬𝟐 − 𝟔𝐑𝐫 − 𝟑𝐫𝟐)) =

𝐬(𝟐𝐑− 𝐫)

𝟖𝐑𝟐
 

≥
? 𝟑

𝟏𝟔
∑𝐬𝐢𝐧𝐀

𝐜𝐲𝐜

=
𝟑𝐬

𝟏𝟔𝐑
⇔ 𝟒𝐑 − 𝟐𝐫 ≥

?
𝟑𝐑 ⇔ 𝐑 ≥

?
𝟐𝐫 → 𝐭𝐫𝐮𝐞 𝐯𝐢𝒂 𝐄𝐮𝐥𝐞𝐫 

∴ ∑𝐜𝐨𝐬𝟑
𝐀

𝟐
𝐬𝐢𝐧

𝐁

𝟐
𝐬𝐢𝐧

𝐂

𝟐
𝐜𝐲𝐜

≥
𝟑

𝟏𝟔
∑𝐬𝐢𝐧𝐀

𝐜𝐲𝐜

 ∀ ∆ 𝐀𝐁𝐂, 

′′ = ′′ 𝐢𝐟𝐟 ∆ 𝐀𝐁𝐂 𝐢𝐬 𝐞𝐪𝐮𝐢𝒍𝒂𝐭𝐞𝐫𝒂𝒍 (𝐐𝐄𝐃) 
 

Solution 2 by Tapas Das-India 

∑𝐜𝐨𝐬𝟑
𝑨

𝟐
𝐬𝐢𝐧

𝑩

𝟐
𝐬𝐢𝐧

𝑪

𝟐
=∑(

𝟏

𝐬𝐢𝐧
𝑨
𝟐

𝒄𝒐𝒔𝟑
𝑨

𝟐
𝐬𝐢𝐧

𝑨

𝟐
𝐬𝐢𝐧

𝑩

𝟐
𝐬𝐢𝐧

𝑪

𝟐
) 

=
𝒓

𝟒𝑹
∑

𝐜𝐨𝐭𝟑
𝑨
𝟐

𝐬𝐢𝐧
𝑨
𝟐

=
𝒓

𝟒𝑹
∑(𝐜𝐨𝐭

𝑨

𝟐
𝐜𝐨𝐬𝟐

𝑨

𝟐
) =

𝒓

𝟒𝑹
∑𝐜𝐨𝐭

𝑨

𝟐
(𝟏 − 𝐬𝐢𝐧𝟐

𝑨

𝟐
) 

=
𝒓

𝟒𝑹
(∑𝐜𝐨𝐭

𝑨

𝟐
−∑𝐜𝐨𝐬

𝑨

𝟐
𝐬𝐢𝐧

𝑨

𝟐
) =

𝒓

𝟒𝑹
(
𝒔

𝒓
−
𝟏

𝟐
∑𝐬𝐢𝐧𝑨) 

=
𝒔

𝟒𝑹
−
𝟏

𝟐
.
𝒓

𝟒𝑹
.∑𝐬𝐢𝐧𝑨 =

∑𝐬𝐢𝐧𝑨=
𝒔
𝑹
 &  𝐸𝑢𝑙𝑒𝑟 𝟏

𝟒
∑𝐬𝐢𝐧𝑨 −

𝟏

𝟐
.
𝟏

𝟒
.
𝟏

𝟐
∑𝐬𝐢𝐧𝑨

=
𝟏

𝟒
∑𝐬𝐢𝐧𝑨 −

𝟏

𝟏𝟔
∑𝐬𝐢𝐧𝑨 =

𝟑

𝟏𝟔
∑𝐬𝐢𝐧𝑨 

 
Equality  holds  for  an equilateral triangle. 

Solution 3 by proposers 

∑𝐜𝐨𝐬𝟑
𝑨

𝟐
𝒄𝒚𝒄

𝐬𝐢𝐧
𝑩

𝟐
𝐬𝐢𝐧

𝑪

𝟐
=∑𝐜𝐨𝐬

𝑨

𝟐
𝒄𝒚𝒄

(𝟏 − 𝐬𝐢𝐧𝟐
𝑨

𝟐
) 𝐬𝐢𝐧

𝑩

𝟐
𝐬𝐢𝐧

𝑪

𝟐
= 

=∑𝐜𝐨𝐬
𝑨

𝟐
𝒄𝒚𝒄

𝐬𝐢𝐧
𝑩

𝟐
𝐬𝐢𝐧

𝑪

𝟐
−∑𝐜𝐨𝐬

𝑨

𝟐
𝐬𝐢𝐧𝟐

𝑨

𝟐
𝐬𝐢𝐧

𝑩

𝟐
𝐬𝐢𝐧

𝑪

𝟐
𝒄𝒚𝒄

= 

= 𝐜𝐨𝐬
𝑨

𝟐
𝐜𝐨𝐬

𝑩

𝟐
𝐜𝐨𝐬

𝑪

𝟐
∑𝐭𝐚𝐧

𝑨

𝟐
𝐭𝐚𝐧

𝑩

𝟐
𝒄𝒚𝒄

− 𝐬𝐢𝐧
𝑨

𝟐
𝐬𝐢𝐧

𝑩

𝟐
𝐬𝐢𝐧

𝑪

𝟐
∑𝐬𝐢𝐧

𝑨

𝟐
𝐜𝐨𝐬

𝑨

𝟐
𝒄𝒚𝒄

 

But in any triangle holds ∑ 𝐭𝐚𝐧
𝑨

𝟐𝒄𝒚𝒄 𝐭𝐚𝐧
𝑩

𝟐
= 𝟏, therefore 

∑𝐜𝐨𝐬𝟑
𝑨

𝟐
𝒄𝒚𝒄

𝐬𝐢𝐧
𝑩

𝟐
𝐬𝐢𝐧

𝑪

𝟐
= 𝐜𝐨𝐬

𝑨

𝟐
𝐜𝐨𝐬

𝑩

𝟐
𝐜𝐨𝐬

𝑪

𝟐
− 𝐬𝐢𝐧

𝑨

𝟐
𝐬𝐢𝐧

𝑩

𝟐
𝐬𝐢𝐧

𝑪

𝟐
∑𝐬𝐢𝐧

𝑨

𝟐
𝐜𝐨𝐬

𝑨

𝟐
𝒄𝒚𝒄
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= 𝐜𝐨𝐬
𝑨

𝟐
𝐜𝐨𝐬

𝑩

𝟐
𝐜𝐨𝐬

𝑪

𝟐
−
𝟏

𝟐
𝐬𝐢𝐧

𝑨

𝟐
𝐬𝐢𝐧

𝑩

𝟐
𝐬𝐢𝐧

𝑪

𝟐
∑𝐬𝐢𝐧𝑨

𝒄𝒚𝒄

 

But 𝐬𝐢𝐧 𝑨 + 𝐬𝐢𝐧𝑩 + 𝐬𝐢𝐧𝑪 = 𝟒𝐜𝐨𝐬
𝑨

𝟐
𝐜𝐨𝐬

𝑩

𝟐
𝐜𝐨𝐬

𝑪

𝟐
, therefore 

∑𝐜𝐨𝐬𝟑
𝑨

𝟐
𝒄𝒚𝒄

𝐬𝐢𝐧
𝑩

𝟐
𝐬𝐢𝐧

𝑪

𝟐
=∑𝐬𝐢𝐧𝑨

𝒄𝒚𝒄

(
𝟏

𝟒
−
𝟏

𝟐
𝐬𝐢𝐧

𝑨

𝟐
𝐬𝐢𝐧

𝑩

𝟐
𝐬𝐢𝐧

𝑪

𝟐
) 

But in any triangle holds 𝐬𝐢𝐧
𝑨

𝟐
𝐬𝐢𝐧

𝑩

𝟐
𝐬𝐢𝐧

𝑪

𝟐
≤

𝟏

𝟖
, so we obtain: 

∑𝐜𝐨𝐬𝟑
𝑨

𝟐
𝐬𝐢𝐧

𝑩

𝟐
𝐬𝐢𝐧

𝑪

𝟐
𝒄𝒚𝒄

≥∑(
𝟏

𝟒
−
𝟏

𝟏𝟔
)

𝒄𝒚𝒄

𝐬𝐢𝐧𝑨 

Equality  holds  for  an equilateral triangle. 
 

JP.585 In 𝚫𝑨𝑩𝑪, 𝑨𝑨′, 𝑩𝑩′, 𝑪𝑪′are internal bisectors which intersect the 

circumcircle of triangle in the points 𝑨′′, 𝑩′′, 𝑪′′. Prove that: 

𝟔 ((
𝑹

𝒓
)
𝟐

− 𝟐) ≤
𝑨𝑨′′

𝑨′𝑨′′
+
𝑩𝑩′′

𝑩′𝑩′′
+
𝑪𝑪′′

𝑪′𝑪′′
≤
𝟏

𝟑
(𝟕 −

𝟐𝒓

𝑹
)
𝟐

 

Proposed by Marian Ursărescu and Florică Anastase – Romania  

Solution by proposers 

𝑨𝑨′′

𝑨′𝑨′′
=

𝑨𝑨′+𝑨′𝑨𝑨′′

𝑨′𝑨′′
=

𝑨𝑨′

𝑨′𝑨′′
+ 𝟏 =

𝑨𝑨′′𝟐

𝑨𝑨′⋅𝑨′𝑨′′
+ 𝟏 =

𝒘𝒂
𝟐

𝑩𝑨′⋅𝑨′𝑪
+ 𝟏      (1) 

But, from Law of bisector: 𝑩𝑨′ ⋅ 𝑨′𝑪 =
𝒂𝟐𝒃𝒄

(𝒃+𝒄)𝟐
       (2) 

From (1) and (2), it follows: 

𝑨𝑨′′

𝑨′𝑨′′
=

𝟒𝒃𝟐𝒄𝟐

(𝒃 + 𝒄)𝟐
⋅ 𝐜𝐨𝐬

𝑨

𝟐
⋅
(𝒃 + 𝒄)𝟐

𝒂𝟐𝒃𝒄
+ 𝟏 =

𝟒𝒃𝒄

𝒂𝟐
⋅ 𝐜𝐨𝐬𝟐

𝑨

𝟐
= 

=
𝟒𝒔(𝒔 − 𝒂)

𝒂𝟐
+ 𝟏 =

(𝒃 + 𝒄 + 𝒂)(𝒃 + 𝒄 − 𝒂)

𝒂𝟐
+ 𝟏 = 

=
(𝒃+𝒄)𝟐−𝒂𝟐

𝒂𝟐
+ 𝟏 =

(𝒃+𝒄)𝟐

𝒂𝟐
  (and analogs) 

We must show that: 𝟔 ((
𝑹

𝒓
)
𝟐

− 𝟐) ≤ ∑
(𝒃+𝒄)𝟐

𝒂𝟐𝒄𝒚𝒄 ≤
𝟏

𝟑
(𝟕 −

𝟐𝒓

𝑹
)
𝟐
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∑
(𝒃+ 𝒄)𝟐

𝒂𝟐
𝒄𝒚𝒄

≥
𝟏

𝟑
(∑

𝒃 + 𝒄

𝒂
𝒄𝒚𝒄

)

𝟐

=
𝟏

𝟑
(
𝒔𝟐 + 𝒓𝟐 − 𝟐𝑹𝒓

𝟐𝑹𝒓
)

𝟐

≥ 

≥
𝑮𝒆𝒓𝒓𝒆𝒕𝒔𝒆𝒏 𝟏

𝟑
(
𝟏𝟒𝑹𝒓 − 𝟒𝒓𝟐

𝟐𝑹𝒓
)

𝟐

=
𝟏

𝟑
(𝟕 −

𝟐𝒓

𝑹
)
𝟐

 

∑
(𝒃+ 𝒄)𝟐

𝒂𝟐
𝒄𝒚𝒄

≤
𝑪𝑩𝑺

∑
𝟐(𝒃𝟐 + 𝒄𝟐)

𝒂𝟐
𝒄𝒚𝒄

= 𝟐∑(
𝒂𝟐

𝒃𝟐
+
𝒃𝟐

𝒂𝟐
)

𝒄𝒚𝒄

 

But, 
𝒂

𝒃
+

𝒃

𝒂
≤

𝑹

𝒓
⇒

𝒂𝟐

𝒃𝟐
+

𝒃𝟐

𝒂𝟐
≤

𝑹𝟐

𝒓𝟐
− 𝟐. Finally, we get: 

∑
(𝒃 + 𝒄)𝟐

𝒂𝟐
𝒄𝒚𝒄

≤ 𝟐(
𝟑𝑹𝟐

𝒓𝟐
− 𝟔) = 𝟔(

𝑹𝟐

𝒓𝟐
− 𝟐) 

 

PROBLEMS FOR SENIORS 

SP.571 For given 𝒏 ≥ 𝟑, prove that 𝟑 is the largest positive value of the 

constant 𝒌 such that: 

𝟏

𝒂𝟏
+
𝟏

𝒂𝟐
+⋯+

𝟏

𝒂𝒏
− 𝒏 ≥ 𝒌(𝒂𝟏 + 𝒂𝟐 +⋯+ 𝒂𝒏 − 𝒏) 

for any 𝒂𝟏 ≥ 𝒂𝟐 ≥ ⋯ ≥ 𝒂𝒏−𝟏 ≥ 𝟏 ≥ 𝒂𝒏 > 0 with 

𝒂𝟏𝒂𝟐 + 𝒂𝟐𝒂𝟑 +⋯+ 𝒂𝒏−𝟏𝒂𝒏 + 𝒂𝒏𝒂𝟏 = 𝒏. 

Proposed by Vasile Cîrtoaje – Romania  

Solution by proposer 

Choosing 𝒂𝟐 = ⋯ = 𝒂𝒏−𝟏 = 𝟏, then inequality becomes 
𝟏

𝒂𝟏
+

𝟏

𝒂𝒏
− 𝟐 ≥ 𝒌(𝒂𝟏 + 𝒂𝒏 − 𝟐), 

where 𝒂𝟏 ≥ 𝟏 ≥ 𝒂𝒏 > 0 such that 𝒂𝟏𝒂𝒏 + 𝒂𝟏 + 𝒂𝒏 = 𝟑. Let 𝒑 = 𝒂𝟏𝒂𝒏. From  

𝟑 = 𝒂𝟏𝒂𝒏 + 𝒂𝟏 + 𝒂𝒏 ≥ 𝒑 + 𝟐√𝒑, we get 𝒑 ∈ (𝟎, 𝟏]. Write the inequality as follows: 

𝟑 − 𝒑

𝒑
− 𝟐 ≥ 𝒌(𝟏 − 𝒑),   (𝟏 − 𝒑)(𝟑 − 𝒌𝒑) ≥ 𝟎. 
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It is true if and only if 𝟑 − 𝒌𝒑 ≥ 𝟎 for 𝒑 ∈ (𝟎, 𝟏). From the necessary condition 𝐥𝐢𝐦
𝒑→𝟏

(𝟑 −

𝒌𝒑) ≥ 𝟎, we get 𝒌 ≤ 𝟑. To show that 𝟑 is the largest positive value of 𝒌, we need to prove 

the inequality  

𝟏

𝒂𝟏
+
𝟏

𝒂𝟐
+⋯+

𝟏

𝒂𝒏
+ 𝟐𝒏 ≥ 𝟑(𝒂𝟏 + 𝒂𝟐 +⋯+ 𝒂𝒏). 

By the AM-HM inequality, we have 
𝟏

𝒂𝟐
+⋯+

𝟏

𝒂𝒏−𝟏
≥

𝒏−𝟐

𝑺
, where 𝑺 =

𝒂𝟐+⋯+𝒂𝒏−𝟏

𝒏−𝟐
≥ 𝟏. So, it 

suffices to show that 𝑬 ≥ 𝟎, where  

𝑬 =
𝟏

𝒂𝟏
+
𝟏

𝒂𝒏
+
𝒏 − 𝟐

𝑺
+ 𝟐𝒏 − 𝟑[𝒂𝟏 + 𝒂𝒏 + (𝒏 − 𝟐)𝑺]. 

By Lemma below, we have (𝒏 − 𝟑)𝑺𝟐 + (𝒂𝟏 + 𝒂𝒏)𝑺 + 𝒂𝟏𝒂𝒏 < 𝑛. Since the expression 𝑬 

decreases when 𝒂𝟏 increases, we may increase 𝒂𝟏 to have 

(𝒏 − 𝟑)𝑺𝟐 + (𝒂𝟏 + 𝒂𝒏)𝑺 + 𝒂𝟏𝒂𝒏 = 𝒏. 

Denoting 𝒙 =
𝒂𝟏+𝒂𝒏

𝟐
, we need to show that 

𝟐𝒙

𝒏 − (𝒏 − 𝟑)𝑺𝟐 − 𝟐𝑺𝒙
+
𝒏 − 𝟐

𝑺
+ 𝟐𝒏 − 𝟑[𝟐𝒙 + (𝒏 − 𝟐)𝑺] ≥ 𝟎 

for (𝒏 − 𝟑)𝑺𝟐 + 𝟐𝑺𝒙 + 𝒂𝟏𝒂𝟐 = 𝒏. From (𝑺 − 𝒂𝟏)(𝑺 − 𝒂𝒏) ≤ 𝟎, we obtain: 

𝟐𝑺𝒙 ≥ 𝒂𝟏𝒂𝒏 + 𝑺
𝟐 = 𝒏 − 𝟐𝑺𝒙 − (𝒏 − 𝟒)𝑺𝟐 

therefore 

𝟒𝑺𝒙 ≥ 𝒏 − (𝒏 − 𝟒)𝑺𝟐. 

For fixed 𝑺, the desired inequality is equivalent to 𝑭(𝒙) ≥ 𝟎, where 

𝑭(𝒙) = 𝟏𝟐𝑺𝟐𝒙𝟐 + [𝟔(𝟐𝒏 − 𝟓)𝑺𝟐 − 𝟒𝒏𝑺 − 𝟖𝒏 + 𝟔]𝑺𝒙 + 

+[𝒏 − (𝒏 − 𝟑)𝑺𝟐][𝒏 − 𝟐 + 𝟐𝒏𝑺 − 𝟑(𝒏 − 𝟐)𝑺𝟐] 

Since 

𝑭′(𝒙) = 𝟐𝟒𝑺𝟐𝒙 + 𝟔(𝟐𝒏 − 𝟓)𝑺𝟑 − 𝟒𝒏𝑺𝟐 − (𝟖𝒏 − 𝟔)𝑺 ≥ 

≥ 𝟔𝑺[𝒏 − (𝒏 − 𝟒)𝑺𝟐] + 𝟔(𝟐𝒏 − 𝟓)𝑺𝟑 − 𝟒𝒏𝑺𝟐 − (𝟖𝒏 − 𝟔)𝑺 

= 𝟔(𝒏 − 𝟏)𝑺𝟑 − 𝟒𝒏𝑺𝟐 − (𝟐𝒏 − 𝟔)𝑺 ≥ 𝟔(𝒏 − 𝟏)𝑺𝟐 − 𝟒𝒏𝑺𝟐 − (𝟐𝒏 − 𝟔)𝑺 = 

= 𝒏(𝒏 − 𝟑)𝑺(𝑺 − 𝟏) ≥ 𝟎, 

𝑭(𝒙) is increasing, hence 
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𝑭(𝒙) ≥ 𝑭 (
𝒏 − (𝒏 − 𝟒)𝑺𝟐

𝟒𝑺
) =

𝒏[𝟑(𝒏 − 𝟐)𝑺𝟒 − 𝟒(𝒏 − 𝟐)𝑺𝟑 − 𝟐𝒏𝑺𝟐 + 𝟒𝒏𝑺 − 𝒏 − 𝟐]

𝟒
 

=
𝒏(𝑺 − 𝟏)𝟐[𝟑(𝒏− 𝟐)𝑺𝟐 + 𝟐(𝒏 − 𝟐)𝑺 − 𝒏 − 𝟐]

𝟒
≥ 𝟎. 

The proof is completed. For 𝒌 = 𝟑, the equality occurs when 𝒂𝟏 = 𝒂𝟐 = ⋯ = 𝒂𝒏 = 𝟏. 

Lemma: 

 Let 𝒏 ≥ 𝟑. If 𝒂𝟏 ≥ 𝒂𝟐 ≥ ⋯ ≥ 𝒂𝒏 ≥ 𝟎 such that 𝒂𝟏𝒂𝟐 + 𝒂𝟐𝒂𝟑 +⋯+ 𝒂𝒏𝒂𝟏 = 𝒏, then 

(𝒏 − 𝟑)𝑺𝟐 + (𝒂𝟏 + 𝒂𝒏)𝑺 + 𝒂𝟏𝒂𝒏 ≤ 𝒏, 

where 𝑺 =
𝒂𝟐+⋯+𝒂𝒏−𝟏

𝒏−𝟐
. 

Proof: 

For 𝒏 = 𝟑, the inequality is an equality. For 𝒏 ≥ 𝟒, we write the desired inequality in the 

homogeneous form: 

(𝒏 − 𝟑)𝑺𝟐 + (𝒂𝟏 + 𝒂𝒏)𝑺 + 𝒂𝟏𝒂𝒏 ≤ 𝒂𝟏𝒂𝟐 + 𝒂𝟐𝒂𝟑 +⋯+ 𝒂𝒏𝒂𝟏, 

which is equivalent to 

(𝒏 − 𝟑)𝑺𝟐 + 𝒂𝟏(𝑺 − 𝒂𝟐) + 𝒂𝒏(𝑺 − 𝒂𝒏−𝟏) ≤ 𝒂𝟐𝒂𝟑 +⋯+ 𝒂𝒏−𝟐𝒂𝒏−𝟏. 

Since 𝑺 − 𝒂𝟐 ≤ 𝟎 and 𝑺 − 𝒂𝒏−𝟏 ≥ 𝟎, it suffices to show that 

(𝒏 − 𝟑)𝑺𝟐 + 𝒂𝟐(𝑺 − 𝒂𝟐) + 𝒂𝒏−𝟏(𝑺 − 𝒂𝒏−𝟏) ≤ 𝒂𝟐𝒂𝟑 +⋯+ 𝒂𝒏−𝟐𝒂𝒏−𝟏, 

which can be rewritten as 

𝒂𝟐𝒂𝟑 +⋯+ 𝒂𝒏−𝟐𝒂𝒏−𝟏 ≥ (𝒏 − 𝟑)𝑺
𝟐 + (𝒂𝟐 + 𝒂𝒏−𝟏)𝑺 − 𝒂𝟐

𝟐 − 𝒂𝒏−𝟏
𝟐 . 

Since the sequence 𝒂𝟐, 𝒂𝟑, … , 𝒂𝒏−𝟐 and 𝒂𝟑, 𝒂𝟒, … , 𝒂𝒏−𝟏 are decreasing, by Chebyshev’s 

inequality we have 

(𝒏 − 𝟑)(𝒂𝟐𝒂𝟑 +⋯+ 𝒂𝒏−𝟐𝒂𝒏−𝟏) ≥ (𝒂𝟐 +⋯+ 𝒂𝒏−𝟐)(𝒂𝟑 +⋯+ 𝒂𝒏−𝟏) = 

= ((𝒏 − 𝟐)𝑺 − 𝒂𝒏−𝟏)((𝒏 − 𝟐)𝑺 − 𝒂𝟐). 

Thus, it suffices to show that 

((𝒏 − 𝟐)𝑺 − 𝒂𝒏−𝟏)((𝒏 − 𝟐)𝑺 − 𝒂)𝟐 )

𝒏 − 𝟑
≥ (𝒏 − 𝟑)𝑺𝟐 + (𝒂𝟐 + 𝒂𝒏−𝟏)𝑺 − 𝒂𝟐

𝟐 − 𝒂𝒏−𝟏
𝟐 , 

which is equivalent to 

(𝟐𝒏 − 𝟓)𝑺𝟐 − (𝟐𝒏 − 𝟓)(𝒂𝟐 + 𝒂𝒏−𝟏)𝑺 + (𝒏 − 𝟑)(𝒂𝟐
𝟐 + 𝒂𝒏−𝟏

𝟐 ) + 𝒂𝟐𝒂𝒏−𝟏 ≥ 𝟎, 

(𝟐𝒏 − 𝟓)(𝟐𝑺 − 𝒂𝟐 − 𝒂𝒏−𝟏)
𝟐 + (𝟐𝒏 − 𝟕)(𝒂𝟐 − 𝒂𝒏−𝟏)

𝟐 ≥ 𝟎. 
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Clearly, the last inequality is true. 

SP.572 Let 𝒂, 𝒃, 𝒄 be positive real numbers such that 𝒂 = 𝐦𝐢𝐧{𝒂, 𝒃, 𝒄} and 

𝒂𝟒𝒃𝒄 ≥ 𝟏, and let 

𝑭(𝒂, 𝒃, 𝒄) = √𝒂𝒃𝒄
𝟑

−
𝟑

𝟏
𝒂
+
𝟏
𝒃
+
𝟏
𝒄

 

Prove that: 

𝑭(𝒂, 𝒃, 𝒄) ≥ 𝑭(
𝟏

𝒂
,
𝟏

𝒃
,
𝟏

𝒄
) 

Proposed by Vasile Cîrtoaje – Romania  

Solution by proposer 

Since 𝑭(𝒂, 𝒃, 𝒄) ≥ 𝟎 and 𝑭 (
𝟏

𝒂
,
𝟏

𝒃
,
𝟏

𝒄
) ≥ 𝟎 (by the AM-GM inequality), it suffices to prove the 

homogeneous inequality 

𝑭(𝒂, 𝒃, 𝒄) ≥ (𝒂𝟒𝒃𝒄)
𝟏
𝟑 ⋅ 𝑭 (

𝟏

𝒂
,
𝟏

𝒃
,
𝟏

𝒄
) 

for 𝒂 = 𝐦𝐢𝐧{𝒂, 𝒃, 𝒄}. Due to homogeneity, we may set 𝒂 = 𝟏, hence 𝒃, 𝒄 ≥ 𝟏. Thus, we 

need to show that 

(𝒃𝒄)
𝟏
𝟑 −

𝟑𝒃𝒄

𝒃 + 𝒄 + 𝒃𝒄
≥ (𝒃𝒄)

𝟏
𝟑 [

𝟏

(𝒃𝒄)
𝟏
𝟑

−
𝟑

𝟏 + 𝒃 + 𝒄
]. 

Denote 

𝒔 =
𝒃 + 𝒄

𝟐
,    𝒑 = √𝒃𝒄, 

with 𝒔 ≥ 𝒑 ≥ 𝟏. The desired inequality is equivalent to 

𝒑
𝟐
𝟑 −

𝟑𝒑𝟐

𝟐𝒔 + 𝒑𝟐
≥ 𝟏 −

𝟑𝒑
𝟐
𝟑

𝟐𝒔 + 𝟏
, 

𝒑
𝟐
𝟑 − 𝟏 ≥ 𝟑𝒑

𝟐
𝟑(

𝒑
𝟒
𝟑

𝟐𝒔 + 𝒑𝟐
−

𝟏

𝟐𝒔 + 𝟏
), 
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𝒑
𝟐
𝟑

𝟑𝒑
𝟐
𝟑

≥
𝟐𝒔(𝒑

𝟒
𝟑 − 𝟏) − 𝒑

𝟒
𝟑 (𝒑

𝟐
𝟑 − 𝟏)

(𝟐𝒔 + 𝒑𝟐)(𝟐𝒔 + 𝟏)
. 

It is true if 

𝟏

𝟑𝒑
𝟐
𝟑

≥
𝟐𝒔(𝒑

𝟐
𝟑 + 𝟏) − 𝒑

𝟒
𝟑

(𝟐𝒔 + 𝒑𝟐)(𝟐𝒔 + 𝟏)
, 

i.e.  

𝟒𝒔𝟐 − 𝟐𝑨𝒔 + 𝟒𝒑𝟐 ≥ 𝟎,     𝑨 = 𝟑𝒑
𝟒
𝟑 + 𝟑𝒑

𝟐
𝟑 − 𝒑𝟐 − 𝟏. 

For the nontrivial case 𝑨 ≥ 𝟎, since 

𝟒(𝟒𝒔𝟐 − 𝟐𝑨𝒔 + 𝟒𝒑𝟐) = (𝟒𝒔 − 𝑨)𝟐 + 𝟏𝟔𝒑𝟐 − 𝑨𝟐 ≥ 𝟏𝟔𝒑𝟐 − 𝑨𝟐 = (𝟒𝒑 − 𝑨)(𝟒𝒑 + 𝑨), 

it suffices to show that 𝟒𝒑 − 𝑨 ≥ 𝟎, which is equivalent to 

𝒑𝟐 − 𝟑𝒑
𝟒
𝟑 + 𝟒𝒑 − 𝟑𝒑

𝟐
𝟑 + 𝟏 ≥ 𝟎. 

Denoting 𝒑 = 𝒙𝟑, we need to show that 

𝒙𝟔 − 𝟑𝒙𝟒 + 𝟒𝒙𝟑 − 𝟑𝒙𝟐 + 𝟏 ≥ 𝟎, 

that is 

(𝒙 − 𝟏)𝟐(𝒙𝟒 + 𝟐𝒙𝟑 + 𝟐𝒙 + 𝟏) ≥ 𝟎. 

The proof is completed. The equality occurs for 𝒂 = 𝒃 = 𝒄 ≥ 𝟏. 

Remark. The inequality 𝑭(𝒂, 𝒃, 𝒄) ≤ 𝑭(
𝟏

𝒂
,
𝟏

𝒃
,
𝟏

𝒄
) is true in the particular case 𝒂, 𝒃, 𝒄 ≥ 𝟏 

(which involves 𝒂𝟒𝒃𝒄 ≥ 𝟏). 

SP.573 Let 𝝀 ≥
𝟏

𝟐
 fixed. If 𝒂, 𝒃, 𝒄 > 0, 𝑎 + 𝑏 + 𝑐 ≤ 4 then find the maximum 

value of 

𝑷 =
√𝒂𝒃𝒄

(𝒂 + 𝒃)(𝒃 + 𝒄)
−

𝝀

𝒄(𝒂 + 𝒃)
 

Proposed by Marin Chirciu – Romania  

Solution by proposer 

Lemma 1: If 𝒂, 𝒃, 𝒄 > 0 then: 
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√𝒂𝒃𝒄

(𝒂 + 𝒃)(𝒃 + 𝒄)
≤

𝟏

𝟐√𝒂 + 𝒃 + 𝒄
 

Proof: 

Using means inequality we obtain: 

(𝒂 + 𝒃)(𝒃 + 𝒄) = 𝒃𝟐 + 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 = 𝒃(𝒂 + 𝒃 + 𝒄) + 𝒂𝒄 ≥
𝑨𝑮𝑴

𝟐√𝒃(𝒂 + 𝒃 + 𝒄) ⋅ 𝒂𝒄 = 

= 𝟐√𝒂𝒃𝒄(𝒂 + 𝒃 + 𝒄), with equality for 𝒃(𝒂 + 𝒃 + 𝒄) = 𝒂𝒄. 

Lemma 2: If 𝒂, 𝒃, 𝒄 > 0 then: 

𝟏

𝒄(𝒂 + 𝒃)
≥

𝟒

(𝒂 + 𝒃 + 𝒄)𝟐
. 

Proof: 

With means inequality we obtain: 

𝒄 + (𝒂 + 𝒃) ≥
𝑨𝑮𝑴

𝟐√𝒄(𝒂 + 𝒃), with equality for 𝒄 = 𝒂 + 𝒃,so 𝒂 + 𝒃 + 𝒄 ≥ 𝟐√𝒄(𝒂 + 𝒃) ⇒ 

⇒ (𝒂+ 𝒃 + 𝒄)𝟐 ≥ 𝟒𝒄(𝒂 + 𝒃) ⇒ 𝒄(𝒂 + 𝒃) ≤
(𝒂 + 𝒃 + 𝒄)𝟐

𝟒
⇒

𝟏

𝒄(𝒂 + 𝒃)
≥

𝟒

(𝒂 + 𝒃 + 𝒄)𝟐
. 

Let’s get back to the main problem. Using the above Lemmas, we obtain: 

𝑷 =
√𝒂𝒃𝒄

(𝒂 + 𝒃)(𝒂 + 𝒄)
−

𝝀

𝒄(𝒂 + 𝒃)
≤

𝟏

𝟐√𝒂 + 𝒃 + 𝒄
−

𝟒𝝀

(𝒂 + 𝒃 + 𝒄)𝟐
 

Denoting √𝒂 + 𝒃 + 𝒄 = 𝒕 we have 𝟎 < 𝑡 ≤ 2 and 𝑷 ≤
𝟏

𝟐𝒕
−

𝟒𝝀

𝒕𝟒
. 

Considering the function 𝒇: (𝟎, 𝟐] → ℝ, 𝒇(𝒕) =
𝟏

𝟐𝒕
−

𝟒𝝀

𝒕𝟒
. 

We have 𝒇′(𝒕) =
𝟑𝟐𝝀−𝒕𝟑

𝒕𝟓
> 0,0 < 𝑡 ≤ 2, 𝜆 ≥

𝟏

𝟐
. It follows that the function 𝒇 is strictly 

increasing on (𝟎, 𝟐], so 𝒇(𝒕) ≤ 𝒇(𝟐) =
𝟏

𝟒
−

𝝀

𝟗
 

It follows 𝑷 ≤
𝟏

𝟐𝒕
−

𝟒𝝀

𝒕𝟒
= 𝒇(𝒕) ≤ 𝒇(𝟐) =

𝟏−𝝀

𝟒
. 

From 𝑷 ≤
𝟏

𝟒
−

𝝀

𝟗
, with equality for 𝒂 + 𝒃 + 𝒄 = 𝟒, 𝒃(𝒂 + 𝒃 + 𝒄) = 𝒂𝒄, 𝒄 = 𝒂 + 𝒃, 

namely for (𝒂, 𝒃, 𝒄) = (
𝟒

𝟑
,
𝟐

𝟑
, 𝟐), we deduce that 𝐦𝐚𝐱𝑷 =

𝟏−𝝀

𝟒
 and the maximum is 

attained for (𝒂, 𝒃, 𝒄) = (
𝟒

𝟑
,
𝟐

𝟑
, 𝟐). 
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SP.574 If 𝒂, 𝒃, 𝒄, 𝒅 > 0; 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 + 𝒅𝟐 = 𝟒 then: 

𝟏

(𝟏 + 𝒂𝒃)𝟑
+

𝟏

(𝟏 + 𝒂𝒄)𝟑
+

𝟏

(𝟏 + 𝒂𝒅)𝟑
+

𝟏

(𝟏 + 𝒃𝒄)𝟑
+

𝟏

(𝟏 + 𝒃𝒅)𝟑
+

𝟏

(𝟏 + 𝒄𝒅)𝟑
≥
𝟑

𝟒
 

Proposed by Daniel Sitaru – Romania  

Solution 1 by Soumava Chakraborty-Kolkata-India 

𝐖𝐞 𝐡𝒂𝐯𝐞 ∶ 
𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐 ≥ 𝒂𝐛 + 𝐛𝐜 + 𝐜𝒂 → (𝟏) 

 
𝒂𝟐 + 𝐛𝟐 + 𝐝𝟐 ≥ 𝒂𝐛 + 𝐛𝐝 + 𝐝𝒂 → (𝟐) 

 

𝒂𝟐 + 𝐜𝟐 + 𝐝𝟐 ≥ 𝒂𝐜 + 𝐜𝐝 + 𝐝𝒂 → (𝟑) 
 

𝐛𝟐 + 𝐜𝟐 + 𝐝𝟐 ≥ 𝐛𝐜 + 𝐜𝐝 + 𝐛𝐝 → (𝟒)  
 

𝒂𝐧𝐝 𝐯𝐢𝒂 (𝟏) + (𝟐) + (𝟑) + (𝟒),𝐰𝐞 𝐠𝐞𝐭 ∶ 
 

𝟑(𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐 + 𝐝𝟐) ≥ 𝟐(𝒂𝐛 + 𝒂𝐜 + 𝒂𝐝 + 𝐛𝐜 + 𝐛𝐝 + 𝐜𝐝) 

⇒
𝒂𝟐+𝐛𝟐+𝐜𝟐+𝐝𝟐 = 𝟒

𝟏𝟐 ≥ 𝟐(𝒂𝐛 + 𝒂𝐜 + 𝒂𝐝 + 𝐛𝐜 + 𝐛𝐝 + 𝐜𝐝) 

⇒ 𝒂𝐛 + 𝒂𝐜 + 𝒂𝐝 + 𝐛𝐜 + 𝐛𝐝 + 𝐜𝐝 ≤
(∗)

𝟔 𝒂𝐧𝐝 𝐯𝐢𝒂 𝐑𝒂𝐝𝐨𝐧, 
𝟏

(𝟏 + 𝒂𝐛)𝟑
+

𝟏

(𝟏 + 𝒂𝐜)𝟑
+

𝟏

(𝟏 + 𝒂𝐝)𝟑
+

𝟏

(𝟏 + 𝐛𝐜)𝟑
+

𝟏

(𝟏 + 𝐛𝐝)𝟑
+

𝟏

(𝟏 + 𝐜𝐝)𝟑
= 

=
𝟏𝟒

(𝟏 + 𝒂𝐛)𝟑
+

𝟏𝟒

(𝟏 + 𝒂𝐜)𝟑
+

𝟏𝟒

(𝟏 + 𝒂𝐝)𝟑
+

𝟏𝟒

(𝟏 + 𝐛𝐜)𝟑
+

𝟏𝟒

(𝟏 + 𝐛𝐝)𝟑
+

𝟏𝟒

(𝟏 + 𝐜𝐝)𝟑
≥ 

(𝟏 + 𝟏 + 𝟏 + 𝟏 + 𝟏 + 𝟏)𝟒

(𝟔 + 𝒂𝐛 + 𝒂𝐜 + 𝒂𝐝 + 𝐛𝐜 + 𝐛𝐝 + 𝐜𝐝)𝟑
≥

𝐯𝐢𝒂 (∗) 𝟔𝟒

(𝟔 + 𝟔)𝟑
= 𝟔. (

𝟔

𝟏𝟐
)
𝟑

=
𝟑

𝟒
 

 

∴
𝟏

(𝟏 + 𝒂𝐛)𝟑
+

𝟏

(𝟏 + 𝒂𝐜)𝟑
+

𝟏

(𝟏 + 𝒂𝐝)𝟑
+

𝟏

(𝟏 + 𝐛𝐜)𝟑
+

𝟏

(𝟏 + 𝐛𝐝)𝟑
+

𝟏

(𝟏 + 𝐜𝐝)𝟑
≥
𝟑

𝟒
 

 

∀ 𝒂, 𝐛, 𝐜, 𝐝 > 𝟎│𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐 + 𝐝𝟐 = 𝟒,′′ =′′ 𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 = 𝐝 = 𝟏 (𝐐𝐄𝐃) 

 

Solution 2 by proposer 
 

(𝒂 − 𝒃)𝟐 + (𝒂 − 𝒄)𝟐 + (𝒂 − 𝒅)𝟐 + (𝒃 − 𝒄)𝟐 + (𝒃 − 𝒅)𝟐 + (𝒄 − 𝒅)𝟐 ≥ 𝟎 

𝒂𝟐 − 𝟐𝒂𝒃 + 𝒃𝟐 + 𝒂𝟐 − 𝟐𝒂𝒄 + 𝒄𝟐 + 𝒂𝟐 − 𝟐𝒂𝒅 + 𝒅𝟐 + 𝒃𝟐 − 𝟐𝒃𝒄 + 𝒄𝟐 + 

+𝒃𝟐 − 𝟐𝒃𝒅 + 𝒅𝟐 + 𝒄𝟐 − 𝟐𝒄𝒅 + 𝒅𝟐 ≥ 𝟎 
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𝟑(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 + 𝒅𝟐) ≥ 𝟐(𝒂𝒃 + 𝒂𝒄 + 𝒂𝒅 + 𝒃𝒄 + 𝒃𝒅 + 𝒄𝒅) 

𝒂𝒃 + 𝒂𝒄 + 𝒂𝒅 + 𝒃𝒄 + 𝒃𝒅 + 𝒄𝒅 ≤
𝟑

𝟐
(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 + 𝒅𝟐) =

𝟑 ⋅ 𝟒

𝟐
= 𝟔 

𝒂𝒃 + 𝒂𝒄 + 𝒂𝒅 + 𝒃𝒄 + 𝒃𝒅 + 𝒄𝒅 ≤ 𝟔    (1) 

𝟏

(𝟏 + 𝒂𝒃)𝟑
+

𝟏

(𝟏 + 𝒂𝒄)𝟑
+

𝟏

(𝟏 + 𝒂𝒅)𝟑
+

𝟏

(𝟏 + 𝒃𝒄)𝟑
+

𝟏

(𝟏 + 𝒃𝒅)𝟑
+

𝟏

(𝟏 + 𝒄𝒅)𝟑
= 

=
𝟏𝟒

(𝟏 + 𝒂𝒃)𝟑
+

𝟏𝟒

(𝟏 + 𝒂𝒄)𝟑
+

𝟏𝟒

(𝟏 + 𝒂𝒅)𝟑
+

𝟏𝟒

(𝟏 + 𝒃𝒄)𝟑
+

𝟏𝟒

(𝟏 + 𝒃𝒅)𝟑
+

𝟏𝟒

(𝟏 + 𝒄𝒅)𝟑
≥ 

≥
𝑹𝑨𝑫𝑶𝑵 (𝟏 + 𝟏 + 𝟏 + 𝟏 + 𝟏 + 𝟏)𝟒

(𝟔 + 𝒂𝒃 + 𝒂𝒄 + 𝒂𝒅 + 𝒃𝒄 + 𝒃𝒅 + 𝒄𝒅)𝟑
≥
(𝟏)

 

≥
𝟔𝟒

(𝟔 + 𝟔)𝟑
=

𝟔𝟒

𝟖 ⋅ 𝟔𝟑
=
𝟔

𝟖
=
𝟑

𝟒
 

Equality holds for 𝒂 = 𝒃 = 𝒄 = 𝒅 = 𝟏. 

SP.575 If 𝒙, 𝒚, 𝒛 > 0, then prove that: 

∑𝒙𝟐 − ∑𝒙𝒚

𝟖(∑𝒙)𝟐
+ (∑𝒙)∑

𝟏

𝟐𝒙 + 𝒚 + 𝒛
≤
𝟑(∑𝒙)𝟐

𝟒∑𝒙𝒚
 

Proposed by Neculai Stanciu – Romania  

Solution 1 by Soumava Chakraborty-Kolkata-India 

𝐀𝐬𝐬𝐢𝐠𝐧𝐢𝐧𝐠 𝐲 + 𝐳 = 𝒂, 𝐳 + 𝒙 = 𝐛, 𝒙 + 𝐲 = 𝐜 ⇒ 𝒂 + 𝐛 − 𝐜 = 𝟐𝐳 > 0, 
𝐛 + 𝐜 − 𝒂 = 𝟐𝒙 > 0 𝒂𝐧𝐝 𝐜 + 𝒂 − 𝐛 = 𝟐𝐲 > 0 ⇒ 𝒂 + 𝐛 > 𝑐, 𝐛 + 𝐜 > 𝒂, 𝐜 + 𝒂 > 𝑏  

⇒ 𝒂, 𝐛, 𝐜 𝐟𝐨𝐫𝐦 𝐬𝐢𝐝𝐞𝐬 𝐨𝐟 𝒂 𝐭𝐫𝐢𝒂𝐧𝐠𝐥𝐞 𝐰𝐢𝐭𝐡 𝐬𝐞𝐦𝐢𝐩𝐞𝐫𝐢𝐦𝐞𝐭𝐞𝐫, 𝐜𝐢𝐫𝐜𝐮𝐦𝐫𝒂𝐝𝐢𝐮𝐬 𝒂𝐧𝐝 𝐢𝐧𝐫𝒂𝐝𝐢𝐮𝐬 

= 𝐬, 𝐑, 𝐫 (𝐬𝒂𝐲) ⇒∑𝒙

𝐜𝐲𝐜

= 𝐬 → (𝟏),∑𝒙𝐲

𝐜𝐲𝐜

= 𝟒𝐑𝐫 + 𝐫𝟐 → (𝟐), 

∑𝒙𝟐

𝐜𝐲𝐜

= 𝐬𝟐 − 𝟖𝐑𝐫 − 𝟐𝐫𝟐 → (𝟑) 𝒂𝐧𝐝 𝐧𝐨𝐰, 

∑ 𝒙𝟐𝐜𝐲𝐜 − ∑ 𝒙𝐲𝐜𝐲𝐜

𝟖(∑ 𝒙𝐜𝐲𝐜 )
𝟐 +(∑𝒙

𝐜𝐲𝐜

)∑
𝟏

𝟐𝒙 + 𝐲 + 𝐳
𝐜𝐲𝐜

≤
𝟑(∑ 𝒙𝐜𝐲𝐜 )

𝟐

𝟒∑ 𝒙𝐲𝐜𝐲𝐜
 

⇔
∑ 𝒙𝟐𝐜𝐲𝐜 − ∑ 𝒙𝐲𝐜𝐲𝐜

𝟖(∑ 𝒙𝐜𝐲𝐜 )
𝟐 +(∑𝒙

𝐜𝐲𝐜

)∑
𝟏

(𝒙 + 𝐲) + (𝐳 + 𝒙)
𝐜𝐲𝐜

≤
𝟑(∑ 𝒙𝐜𝐲𝐜 )

𝟐

𝟒∑ 𝒙𝐲𝐜𝐲𝐜
 

⇔
∑ 𝒙𝟐𝐜𝐲𝐜 −∑ 𝒙𝐲𝐜𝐲𝐜

𝟖(∑ 𝒙𝐜𝐲𝐜 )
𝟐 + (∑𝒙

𝐜𝐲𝐜

)∑
𝟏

𝐜 + 𝐛
𝐜𝐲𝐜

≤
𝟑(∑ 𝒙𝐜𝐲𝐜 )

𝟐

𝟒∑ 𝒙𝐲𝐜𝐲𝐜
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⇔
∑ 𝒙𝟐𝐜𝐲𝐜 − ∑ 𝒙𝐲𝐜𝐲𝐜

𝟖(∑ 𝒙𝐜𝐲𝐜 )
𝟐 +(∑𝒙

𝐜𝐲𝐜

) .
𝟑∑ 𝒂𝐛𝐜𝐲𝐜 + ∑ 𝒂𝟐𝐜𝐲𝐜

𝟐𝐬(𝐬𝟐 + 𝟐𝐑𝐫 + 𝐫𝟐)
≤
𝟑(∑ 𝒙𝐜𝐲𝐜 )

𝟐

𝟒∑ 𝒙𝐲𝐜𝐲𝐜
 

⇔
𝐯𝐢𝒂 (𝟏),(𝟐) 𝒂𝐧𝐝 (𝟑) 𝐬𝟐 − 𝟏𝟐𝐑𝐫 − 𝟑𝐫𝟐

𝟖𝐬𝟐
+
𝟒𝐬𝟐 + 𝐬𝟐 + 𝟒𝐑𝐫 + 𝐫𝟐

𝟐(𝐬𝟐 + 𝟐𝐑𝐫 + 𝐫𝟐)
≤

𝟑𝐬𝟐

𝟒(𝟒𝐑𝐫 + 𝐫𝟐)
 

⇔ 𝟔𝐬𝟒(𝐬𝟐 + 𝟐𝐑𝐫 + 𝐫𝟐) − 

(𝟒𝐑𝐫 + 𝐫𝟐) (𝟒𝐬𝟐(𝟓𝐬𝟐 + 𝟒𝐑𝐫 + 𝐫𝟐) + (𝐬𝟐 − 𝟏𝟐𝐑𝐫 − 𝟑𝐫𝟐)(𝐬𝟐 + 𝟐𝐑𝐫 + 𝐫𝟐)) ≥
(∗)

𝟎 

𝒂𝐧𝐝 ∵ 𝐏 = 𝟔(𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐)𝟑 + (𝟐𝟏𝟔𝐑𝐫 − 𝟏𝟎𝟓𝐫𝟐)(𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐)𝟐 + 

𝟐𝐫𝟐(𝟏𝟏𝟒𝟎𝐑𝟐 − 𝟏𝟑𝟐𝟕𝐑𝐫 + 𝟐𝟗𝟗𝐫𝟐)(𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐) ≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

𝟎 

∴ 𝐢𝐧 𝐨𝐫𝐝𝐞𝐫 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 (∗), 𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 𝐋𝐇𝐒 𝐨𝐟 (∗) ≥
?
𝐏 

⇔ 𝟏𝟒𝟔𝟒𝐭𝟑 − 𝟑𝟖𝟒𝟐𝐭𝟐 + 𝟏𝟗𝟔𝟕𝐭 − 𝟐𝟕𝟖 ≥
?
𝟎 (𝐭 =

𝐑

𝐫
) 

⇔ (𝐭 − 𝟐)(𝟏𝟒𝟔𝟒𝐭𝟐 − 𝟗𝟏𝟒𝐭 + 𝟏𝟑𝟗) ≥
?
𝟎 → 𝐭𝐫𝐮𝐞 ∵ 𝐭 ≥

𝐄𝐮𝐥𝐞𝐫
𝟐 ⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 

∴
∑ 𝒙𝟐𝐜𝐲𝐜 − ∑ 𝒙𝐲𝐜𝐲𝐜

𝟖(∑ 𝒙𝐜𝐲𝐜 )
𝟐 +(∑𝒙

𝐜𝐲𝐜

)∑
𝟏

𝟐𝒙 + 𝐲 + 𝐳
𝐜𝐲𝐜

≤
𝟑(∑ 𝒙𝐜𝐲𝐜 )

𝟐

𝟒∑ 𝒙𝐲𝐜𝐲𝐜
 ∀ 𝒙, 𝐲, 𝐳 > 0, 

′′ =′′ 𝐢𝐟𝐟 𝒙 = 𝐲 = 𝐳 (𝐐𝐄𝐃) 

Solution 2 by proposer 
𝟐∑𝒂𝟐 − 𝟐∑𝒂𝒃 = ∑(𝒂 − 𝒃)𝟐 and 

(∑𝒂) (∑
𝟏

𝒂
) − 𝟗 =∑

(𝒂 − 𝒃)𝟐

𝒂𝒃
. 

Because 𝟒(∑𝒙) = ∑(𝟐𝒙 + 𝒚 + 𝒛) the given inequality becomes successively 

∑𝒙𝟐 −∑𝒙𝒚

𝟐(∑𝒙)𝟐
+ ((𝟐𝒙 + 𝒚 + 𝒛)) (∑

𝟏

𝟐𝒙 + 𝒚 + 𝒛
) − 𝟗 ≤

𝟑(∑𝒙)𝟐

∑𝒙𝒚
− 𝟗 

⇔
∑𝒙𝟐 − ∑𝒙𝒚

𝟐(∑𝒙)𝟐
+∑

(𝟐𝒙 + 𝒚 + 𝒛 − 𝒙 − 𝟐𝒚+ 𝒛)𝟐

(𝟐𝒙 + 𝒚 + 𝒛)(𝒙 + 𝟐𝒚 + 𝒛)
≤
𝟑(∑𝒙𝟐 −∑𝒙𝒚)

∑𝒙𝒚
 

⇔
∑(𝒙 − 𝒚)𝟐

𝟒(∑𝒙)𝟐
+∑

(𝒙 − 𝒚)𝟐

(𝟐𝒙 + 𝒚 + 𝒛)(𝒙 + 𝟐𝒚+ 𝒛)
≤
𝟑∑(𝒙 − 𝒚)𝟐

𝟐∑𝒙𝒚
. 

It suffices to show that 

(𝒙 − 𝒚)𝟐

𝟒(∑𝒙)𝟐
+

(𝒙 − 𝒚)𝟐

(𝟐𝒙 + 𝒚 + 𝒛)(𝒙 + 𝟐𝒚 + 𝒛)
≤
𝟑(𝒙 − 𝒚)𝟐

𝟐∑𝒙𝒚
. 

If 𝒙 = 𝒚, we have equality; if 𝒙 ≠ 𝒚 we must to show that 

𝟏

(𝟐𝒙+𝒚+𝒛)(𝒙+𝟐𝒚+𝒛)
≤

𝟑

𝟐∑𝒙𝒚
−

𝟏

𝟒(∑𝒙)𝟐
, and because 
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(𝟐𝒙 + 𝒚 + 𝒛)(𝒙 + 𝟐𝒚 + 𝒛) ≥ (𝒙 + 𝒚 + 𝒛)𝟐 ≥ 𝟑∑𝒙𝒚, it suffices to prove that 

𝟏

𝟑∑𝒙𝒚
≤

𝟑

𝟐∑𝒙𝒚
−

𝟏

𝟒(∑𝒙)𝟐
≤ 𝟒(∑𝒙)

𝟐

≤ 𝟏𝟖(∑𝒙)
𝟐

− 𝟑∑𝒙𝒚 ⇔ 

⇔ 𝟏𝟒(∑𝒙)𝟐 ≥ 𝟑∑𝒙𝒚, true. The proof is complete. 

SP.576 If 𝒂, 𝒃, 𝒄 ≥ 𝟏, then: 

√
𝒂𝟑 + 𝒃𝟑 + 𝒄𝟑

𝟑

𝟑

−
𝒂 + 𝒃 + 𝒄

𝟑
≥
√
𝟏
𝒂𝟑
+
𝟏
𝒃𝟑
+
𝟏
𝒄𝟑

𝟑

𝟑

−

𝟏
𝒂
+
𝟏
𝒃
+
𝟏
𝒄

𝟑
 

Proposed by Vasile Mircea Popa – Romania 

Solution by proposer 

Without loss of generality, we may assume that 𝒄 ≥ 𝒃 ≥ 𝒂 ≥ 𝟏. 

We write the inequality in the form 𝑬(𝒂, 𝒃, 𝒄) ≥ 𝟎, where: 

𝑬(𝒂, 𝒃, 𝒄) = √𝟗(𝒂𝟑 + 𝒃𝟑 + 𝒄𝟑)
𝟑

− (𝒂 + 𝒃 + 𝒄) − √𝟗 (
𝟏

𝒂𝟑
+
𝟏

𝒃𝟑
+
𝟏

𝒄𝟑
)

𝟑

+ (
𝟏

𝒂
+
𝟏

𝒃
+
𝟏

𝒄
) 

We shall prove that: 𝑬(𝒂, 𝒃, 𝒄) ≥ 𝑬(𝒂, 𝒙, 𝒙) ≥ 𝟎, where: 

𝑬(𝒂, 𝒙, 𝒙) = √𝟗(𝒂𝟑 + 𝟐𝒙𝟑)
𝟑

− (𝒂 + 𝟐𝒙) − √𝟗 (
𝟏

𝒂𝟑
+
𝟐

𝒙𝟑
)

𝟑

+ (
𝟏

𝒂
+
𝟐

𝒙
) 

and 𝒙 = √𝒃𝒄 ≥ 𝒂; 

a. We will prove the inequality: 𝑬(𝒂, 𝒃, 𝒄) ≥ 𝑬(𝒂, 𝒙, 𝒙). 

The inequality can be written as follows: 

𝑨 − 𝑩 ≥ 𝑪 −𝑫, where:   𝑨 = √𝟗(𝒂𝟑 + 𝒃𝟑 + 𝒄𝟑)
𝟑

− √𝟗(𝒂𝟑 + 𝟐𝒙𝟑)
𝟑

; 

𝑨 =
𝟗(𝒃√𝒃 − 𝒄√𝒄)

𝟐

(√𝟗(𝒂𝟑 + 𝒃𝟑 + 𝒄𝟑)
𝟑

)
𝟐

+ √𝟗(𝒂𝟑 + 𝒃𝟑 + 𝒄𝟑)
𝟑

√𝟗(𝒂𝟑 + 𝟐𝒙𝟑)
𝟑

+ (√𝟗(𝒂𝟑 + 𝟐𝒙𝟑)
𝟑

)
𝟐 

𝑨 ≥
𝟗(𝒃√𝒃 − 𝒄√𝒄)

𝟐

(√𝟗(𝒙𝟑 + 𝒃𝟑 + 𝒄𝟑)
𝟑

)
𝟐

+ √𝟗(𝒙𝟑 + 𝒃𝟑 + 𝒄𝟑)
𝟑

𝟑𝒙 + 𝟗𝒙𝟐
 

𝑩 = 𝒂 + 𝒃 + 𝒄 − (𝒂 + 𝟐𝒙) = 𝒃 + 𝒄 − 𝟐𝒙 = (√𝒃 − √𝒄)
𝟐
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𝑪 = √𝟗 (
𝟏

𝒂𝟑
+
𝟏

𝒃𝟑
+
𝟏

𝒄𝟑
)

𝟑

− √𝟗 (
𝟏

𝒂𝟑
+
𝟐

𝒙𝟑
)

𝟑

 

𝑪 =
𝟗(𝒃√𝒃 − 𝒄√𝒄)

𝟐

𝒙𝟔 ((√
𝟏
𝒂𝟑
+
𝟏
𝒃𝟑
+
𝟏
𝒄𝟑

𝟑
)

𝟐

+ √𝟗 (
𝟏
𝒂𝟑
+
𝟏
𝒃𝟑
+
𝟏
𝒄𝟑
)

𝟑
√𝟗 (

𝟏
𝒂𝟑
+
𝟐
𝒙𝟑
)

𝟑
+ (√𝟗 (

𝟏
𝒂𝟑
+
𝟐
𝒙𝟑
)

𝟑
)

𝟐

)

 

𝑪 ≤
𝟗(𝒃√𝒃 − 𝒄√𝒄)

𝟐

𝒙𝟔 ((√𝟗(
𝟏
𝒙𝟑
+
𝟏
𝒃𝟑
+
𝟏
𝒄𝟑
)

𝟑
)

𝟐

+ √𝟗 (
𝟏
𝒙𝟑
+
𝟏
𝒃𝟑
+
𝟏
𝒄𝟑
)

𝟑 𝟑
𝒙 +

𝟗
𝒙𝟐
)

 

𝑪 ≤
𝟗(𝒃√𝒃 − 𝒄√𝒄)

𝟐

𝒙𝟐 ((√𝟗(𝒙𝟑 + 𝒃𝟑 + 𝒄𝟑
𝟑

)
𝟐

+ √𝟗(𝒙𝟑 + 𝒃𝟑 + 𝒄𝟑)
𝟑

𝟑𝒙 + 𝟗𝒙𝟐)
 

𝑫 =
𝟏

𝒂
+
𝟏

𝒃
+
𝟏

𝒄
− (

𝟏

𝒂
+
𝟐

𝒙
) =

𝟏

𝒃
+
𝟏

𝒄
−
𝟐

𝒙
=
(√𝒃 − √𝒄)

𝟐

𝒙𝟐
 

To prove the inequality 𝑬(𝒂, 𝒃, 𝒄) ≥ 𝑬(𝒂, 𝒙, 𝒙) it is enough to prove that: 

𝟗(𝒃√𝒃 − 𝒄√𝒄)
𝟐

(√𝟗(𝒙𝟑 + 𝒃𝟑 + 𝒄𝟑)
𝟑

)
𝟐

+ √𝟗(𝒙𝟑 + 𝒃𝟑 + 𝒄𝟑)
𝟑

𝟑𝒙 + 𝟗𝒙𝟐
− (√𝒃 − √𝒄)

𝟐
≥ 

𝟗(𝒃√𝒃 − 𝒄√𝒄)
𝟐

𝒙𝟐 ((√𝟗(𝒙𝟑 + 𝒃𝟑 + 𝒄𝟑)
𝟑

)
𝟐

+ √𝟗(𝒙𝟑 + 𝒃𝟑 + 𝒄𝟑)
𝟑

𝟑𝒙 + 𝟗𝒙𝟐)
−
(√𝒃 − √𝒄)

𝟐

𝒙𝟐
 

Or: 

(√𝒃 − √𝒄)
𝟐
(

𝟗(𝒃 + 𝒄 + √𝒃𝒄)
𝟐

(√𝟗(𝒙𝟑 + 𝒃𝟑 + 𝒄𝟑)
𝟑

)
𝟐

+ √𝟗(𝒙𝟑 + 𝒃𝟑 + 𝒄𝟑)
𝟑

𝟑𝒙 + 𝟗𝒙𝟐
− 𝟏) ≥ 

(√𝒃 − √𝒄)
𝟐
(

𝟗(𝒃 + 𝒄 + √𝒃𝒄)
𝟐

𝒙𝟐 ((√𝟗(𝒙𝟑 + 𝒃𝟑 + 𝒄𝟑
𝟑

)
𝟐

+ √𝟗(𝒙𝟑 + 𝒃𝟑 + 𝒄𝟑)
𝟑

𝟑𝒙 + 𝟗𝒙𝟐)
−
𝟏

𝒙𝟐
) 

For 𝒃 = 𝒄 this relationship it is true (case of equality). For 𝒃 ≠ 𝒄 we will show that: 

𝟗(𝒃 + 𝒄 + √𝒃𝒄)
𝟐

(√𝟗(𝒙𝟑 + 𝒃𝟑 + 𝒄𝟑)
𝟑

)
𝟐

+ √𝟗(𝒙𝟑 + 𝒃𝟑 + 𝒄𝟑)
𝟑

𝟑𝒙 + 𝟗𝒙𝟐
(𝟏 −

𝟏

𝒙𝟐
) ≥ 𝟏 −

𝟏

𝒙𝟐
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𝟗(𝒃 + 𝒄 + √𝒃𝒄)
𝟐
≥ (√𝟗(𝒙𝟑 + 𝒃𝟑 + 𝒄𝟑)

𝟑
)
𝟐

+ √𝟗(𝒙𝟑 + 𝒃𝟑 + 𝒄𝟑)
𝟑

𝟑𝒙 + 𝟗𝒙𝟐 

𝟗(𝒃 + 𝒄 + √𝒃𝒄)
𝟐
≥ (√𝟗(𝒃𝒄√𝒃𝒄 + 𝒃𝟑 + 𝒄𝟑)

𝟑
)

𝟐

+ √𝟗(𝒃𝒄√𝒃𝒄 + 𝒃𝟑 + 𝒄𝟑)
𝟑

𝟑√𝒃𝒄 + 𝟗𝒃𝒄 

Let us denote:  𝒚 =
𝒃

𝒄
; 𝟎 < 𝑦 ≤ 1 

The previous inequality is written in the equivalent form: 

𝟗(𝒚 + 𝟏 +√𝒚)
𝟐
≥ (√𝟗(𝒚√𝒚 + 𝒚𝟑 + 𝟏)

𝟑
)

𝟐

+ √𝟗(𝒚√𝒚 + 𝒚𝟑 + 𝟏)
𝟑

𝟑√𝒚 + 𝟗𝒚 

But, we have for any 𝒚, 𝟎 < 𝑦 ≤ 1:     9(𝒚√𝒚 + 𝒚𝟑 + 𝟏) ≤ (
𝟗

𝟏𝟎
𝒚 +

𝟐𝟏

𝟏𝟎
)
𝟑

 

Indeed, we calculate: 

(
𝟗

𝟏𝟎
𝒚 +

𝟐𝟏

𝟏𝟎
)
𝟑

− 𝟗(𝒚√𝒚 + 𝒚𝟑 + 𝟏) = 

=
𝟗

𝟏𝟎𝟎𝟎
(𝟏 − √𝒚)(𝟏𝟑𝟓𝟐𝒚 + 𝟗𝟏𝟗𝒚𝟐 + 𝟐𝟗√𝒚 + 𝟑𝟓𝟐𝒚√𝒚 + 𝟗𝟏𝟗𝒚𝟐√𝒚 + 𝟐𝟗) ≥ 𝟎 

Returning to the main inequality, it suffices to prove: 

𝟗(𝒚 + 𝟏 +√𝒚)
𝟐
≥ (

𝟗

𝟏𝟎
𝒚 +

𝟐𝟏

𝟏𝟎
)
𝟐

+ (
𝟗

𝟏𝟎
𝒚 +

𝟐𝟏

𝟏𝟎
)𝟑√𝒚 + 𝟗𝒚 

𝟏𝟎𝟎(𝒚 + 𝟏 + √𝒚)
𝟐
− (𝟑𝒚 + 𝟕)𝟐 − 𝟏𝟎(𝟑𝒚 + 𝟕)√𝒚 − 𝟏𝟎𝟎𝒚 = 

= 𝟏𝟓𝟖𝒚 + 𝟗𝟏𝒚𝟐 + 𝟏𝟑𝟎√𝒚 + 𝟏𝟕𝟎𝒚√𝒚 + 𝟓𝟏 ≥ 𝟎 

Then, the inequality 𝑬(𝒂, 𝒃, 𝒄) ≥ 𝑬(𝒂, 𝒙, 𝒙) is proved. 

b. We will prove the inequality: 𝑬(𝒂, 𝒙, 𝒙) ≥ 𝟎.  We have to show that: 

√𝟗(𝒂𝟑 + 𝟐𝒙𝟑)
𝟑

− (𝒂 + 𝟐𝒙) ≥ √𝟗 (
𝟏

𝒂𝟑
+
𝟐

𝒙𝟑
)

𝟑

− (
𝟏

𝒂
+
𝟐

𝒙
) 

The inequality is successively written in the following equivalent forms: 

𝟗(𝒂𝟑 + 𝟐𝒙𝟑) − (𝒂 + 𝟐𝒙)𝟑

(√𝟗(𝒂𝟑 + 𝟐𝒙𝟑)
𝟑

)
𝟐

+ √𝟗(𝒂𝟑 + 𝟐𝒙𝟑)
𝟑 (𝒂 + 𝟐𝒙) + (𝒂 + 𝟐𝒙)𝟐

≥ 
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≥
𝟗(

𝟏
𝒂𝟑
+
𝟐
𝒙𝟑
) − (

𝟏
𝒂 +

𝟐
𝒙)

𝟑

(√𝟗(
𝟏
𝒂𝟑
+
𝟐
𝒙𝟑
)

𝟑
)

𝟐

+ √𝟗 (
𝟏
𝒂𝟑
+
𝟐
𝒙𝟑
)

𝟑
(
𝟏
𝒂 +

𝟐
𝒙) + (

𝟏
𝒂 +

𝟐
𝒙)

𝟐
 

𝟐(𝟒𝒂 + 𝟓𝒙)(𝒂 − 𝒙)𝟐

(√𝟗(𝒂𝟑 + 𝟐𝒙𝟑)
𝟑

)
𝟐

+ √𝟗(𝒂𝟑 + 𝟐𝒙𝟑)
𝟑 (𝒂 + 𝟐𝒙) + (𝒂 + 𝟐𝒙)𝟐

≥ 

≥

𝟏
𝒂𝟑𝒙𝟑

𝟐(𝟓𝒂 + 𝟒𝒙)(𝒂 − 𝒙)𝟐

𝟏
𝒂𝟐𝒙𝟐

((√𝟗(𝒙𝟑 + 𝟐𝒂𝟑)
𝟑

)
𝟐

+ √𝟗(𝒙𝟑 + 𝟐𝒂𝟑)
𝟑 (𝒙 + 𝟐𝒂) + (𝒙 + 𝟐𝒂)𝟐)

 

𝟐(𝟒𝒂 + 𝟓𝒙)(𝒂 − 𝒙)𝟐

(√𝟗(𝒂𝟑 + 𝟐𝒙𝟑)
𝟑

)
𝟐

+ √𝟗(𝒂𝟑 + 𝟐𝒙𝟑)
𝟑 (𝒂 + 𝟐𝒙) + (𝒂 + 𝟐𝒙)𝟐

≥ 

≥
𝟐(𝟓𝒂 + 𝟒𝒙)(𝒂 − 𝒙)𝟐

𝒂𝒙 (√𝟗(𝒙𝟑 + 𝟐𝒂𝟑)
𝟑

)
𝟐

+ 𝒂𝒙√𝟗(𝒙𝟑 + 𝟐𝒂𝟑)
𝟑 (𝒙 + 𝟐𝒂) + 𝒂𝒙(𝒙 + 𝟐𝒂)𝟐

 

The last inequality holds because: 

a. 𝟒𝒂 + 𝟓𝒙 ≥ 𝟓𝒂 + 𝟒𝒙, equivalent to: 𝒙 ≥ 𝒂. 

b. 𝒂𝒙 (√𝟗(𝒙𝟑 + 𝟐𝒂𝟑)
𝟑

)
𝟐

≥ (√𝟗(𝒂𝟑 + 𝟐𝒙𝟑)
𝟑

)
𝟐

, equivalent to: 

𝒂𝟑(𝒙𝟗 − 𝒂𝟑) + 𝟒𝒙𝟔(𝒂𝟔 − 𝟏) + 𝟒𝒂𝟑𝒙𝟑(𝒂𝟔 − 𝟏) ≥ 𝟎 

c. 𝒂𝒙√𝟗(𝒙𝟑 + 𝟐𝒂𝟑)
𝟑 (𝒙 + 𝟐𝒂) ≥ √𝟗(𝒂𝟑 + 𝟐𝒙𝟑)

𝟑 (𝒂 + 𝟐𝒙), results from inequalities b and d 

d. 𝒂𝒙(𝒙 + 𝟐𝒂)𝟐 ≥ (𝒂 + 𝟐𝒙)𝟐, equivalent to: 

 𝒂(𝒙𝟑 − 𝒂) + 𝟒𝒙𝟐(𝒂𝟐 − 𝟏) + 𝟒𝒂𝒙(𝒂𝟐 − 𝟏) ≥ 𝟎 

Thus, the inequality 𝑬(𝒂, 𝒙, 𝒙) ≥ 𝟎 is proved. 

So, the inequality in the statement: 𝑬(𝒂, 𝒃, 𝒄) ≥ 𝟎 is also proved. 

 

SP.577 Find all 𝒏 ∈ ℕ∗ such that: 

∫ (𝐬𝐢𝐧 𝒙)𝟐𝒏−𝟐
𝟏

𝟎

⋅ (𝐜𝐨𝐬 𝒙)𝟐𝒏𝒅𝒙 ≥
𝟏

𝟒𝟏𝟎𝟏𝟏
 

Proposed by Daniel Sitaru – Romania  
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Solution by proposer 

𝟏

𝟒𝟏𝟎𝟏𝟏
≤ ∫ (𝐬𝐢𝐧 𝒙)𝟐𝒏−𝟐

𝟏

𝟎

⋅ (𝐜𝐨𝐬 𝒙)𝟐𝒏𝒅𝒙 = 

= ∫ (𝐬𝐢𝐧𝟐 𝒙)𝒏−𝟏
𝟏

𝟎

⋅ (𝐜𝐨𝐬𝟐 𝒙)𝒏𝒅𝒙 = ∫ 𝐜𝐨𝐬𝟐 𝒙
𝟏

𝟎

⋅ (𝐬𝐢𝐧𝟐 𝒙 ⋅ 𝐜𝐨𝐬𝟐 𝒙)𝒏−𝟏𝒅𝒙 = 

= ∫ 𝐜𝐨𝐬𝟐 𝒙
𝟏

𝟎

⋅ (𝐬𝐢𝐧𝟐 𝒙 (𝟏 − 𝐬𝐢𝐧𝟐 𝒙))
𝒏−𝟏

𝒅𝒙 ≤
𝑨𝑴−𝑮𝑴

 

≤ ∫ 𝐜𝐨𝐬𝟐 𝒙
𝟏

𝟎

⋅ ((
𝐬𝐢𝐧𝟐 𝒙 + 𝟏 − 𝐬𝐢𝐧𝟐 𝒙

𝟐
)

𝟐

)

𝒏−𝟏

𝒅𝒙 = 

= ∫ 𝐜𝐨𝐬𝟐 𝒙
𝟏

𝟎

⋅
𝟏

𝟐𝟐(𝒏−𝟏)
𝒅𝒙 =

𝟏

𝟒𝒏−𝟏
∫ 𝐜𝐨𝐬𝟐 𝒙𝒅𝒙
𝟏

𝟎

<
𝟏

𝟒𝒏−𝟏
⋅ ∫ 𝒅𝒙

𝟏

𝟎

=
𝟏

𝟒𝒏−𝟏
 

𝟏

𝟒𝟏𝟎𝟏𝟏
<

𝟏

𝟒𝒏−𝟏
⇒ 𝟒𝒏−𝟏 < 𝟒𝟏𝟎𝟏𝟏 ⇒ 𝒏 − 𝟏 < 1011 

⇒ 𝒏 < 1012 ⇒ 𝑛 ∈ {𝟏, 𝟐, 𝟑, … , 𝟏𝟎𝟏𝟏} 

SP.578 If 𝒙, 𝒚 ∈ (𝟎,
𝝅

𝟐
) then: 

𝐥𝐨𝐠𝐬𝐢𝐧𝒙
𝟐 (

𝐬𝐢𝐧 𝟐𝒙

𝐬𝐢𝐧 𝒙 + 𝐜𝐨𝐬 𝒙
) + 𝐥𝐨𝐠𝐜𝐨𝐬𝒙

𝟐 (
𝐬𝐢𝐧 𝟐𝒙

𝐬𝐢𝐧 𝒙 + 𝐜𝐨𝐬 𝒙
) ≥ 𝟐 

Proposed by Daniel Sitaru – Romania  

Solution by proposer 

√𝐥𝐨𝐠𝐬𝐢𝐧𝒙
𝒃 (

𝐬𝐢𝐧𝟐𝒙
𝐬𝐢𝐧𝒙 + 𝐜𝐨𝐬 𝒙) + 𝐥𝐨𝐠𝐜𝐨𝐬 𝒙

𝟐 (
𝐬𝐢𝐧 𝒙

𝐬𝐢𝐧𝒙 + 𝐜𝐨𝐬 𝒙)

𝟐
≥ 

≥
𝑸𝑴−𝑯𝑴 𝟐

𝟏

𝐥𝐨𝐠𝐬𝐢𝐧𝒙 (
𝐬𝐢𝐧 𝒙

𝐬𝐢𝐧𝒙 + 𝐜𝐨𝐬 𝒙)
+

𝟏

𝐥𝐨𝐠𝐜𝐨𝐬 𝒙 (
𝐬𝐢𝐧𝟐𝒙

𝐬𝐢𝐧𝒙 + 𝐜𝐨𝐬 𝒙)

= 

=
𝟐

𝐥𝐨𝐠
(

𝐬𝐢𝐧𝟐𝒙
𝐬𝐢𝐧 𝒙+𝐜𝐨𝐬 𝒙

)
𝐬𝐢𝐧 𝒙 +

𝟏

𝐥𝐨𝐠𝐜𝐨𝐬 𝒙 (
𝐬𝐢𝐧𝟐𝒙

𝐬𝐢𝐧𝒙 + 𝐜𝐨𝐬 𝒙)

= 

=
𝟐

𝐥𝐨𝐠
(

𝐬𝐢𝐧𝟐𝒙
𝐬𝐢𝐧 𝒙+𝐜𝐨𝐬 𝒙

)
𝐬𝐢𝐧 𝒙 + 𝐥𝐨𝐠

(
𝐬𝐢𝐧𝟐𝒙

𝐬𝐢𝐧𝒙+𝐜𝐨𝐬 𝒙
)
𝐜𝐨𝐬 𝒙

= 
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=
𝟐

𝐥𝐨𝐠
(

𝐬𝐢𝐧 𝟐𝒙
𝐬𝐢𝐧𝒙+𝐜𝐨𝐬 𝒙

)
(𝐬𝐢𝐧 𝒙 + 𝐜𝐨𝐬 𝒙)

= 𝟐 𝐥𝐨𝐠𝐬𝐢𝐧𝒙+𝐜𝐨𝐬 𝒙 (
𝐬𝐢𝐧𝟐𝒙

𝐬𝐢𝐧 𝒙 + 𝐜𝐨𝐬 𝒙
) ≥ 𝟏 

⇔ 𝐥𝐨𝐠𝐬𝐢𝐧 𝒙 𝐜𝐨𝐬 𝒙 (
𝐬𝐢𝐧𝟐𝒙

𝐬𝐢𝐧𝒙 + 𝐜𝐨𝐬 𝒙
)
𝟐

≥ 𝐥𝐨𝐠𝐬𝐢𝐧 𝒙 𝐜𝐨𝐬 𝒙(𝐬𝐢𝐧 𝒙 𝐜𝐨𝐬 𝒙) 

⇔ (
𝐬𝐢𝐧𝟐𝒙

𝐬𝐢𝐧𝒙 + 𝐜𝐨𝐬 𝒙
)
𝟐

≤ 𝐬𝐢𝐧𝒙 𝐜𝐨𝐬 𝒙 

⇔ 𝟒𝐬𝐢𝐧𝟐 𝒙 𝐜𝐨𝐬𝟐 𝒙 ≤ 𝐬𝐢𝐧 𝒙 𝐜𝐨𝐬 𝒙 (𝐬𝐢𝐧𝒙 + 𝐜𝐨𝐬 𝒙)𝟐 

⇔ 𝟒𝐬𝐢𝐧𝒙 𝐜𝐨𝐬 𝒙 ≤ (𝐬𝐢𝐧𝒙 + 𝐜𝐨𝐬 𝒙)𝟐 ⇔ 𝟒𝐬𝐢𝐧 𝒙 𝐜𝐨𝐬 𝒙 ≤ 𝐬𝐢𝐧𝟐 𝒙 + 𝐜𝐨𝐬𝟐 𝒙 + 𝟐𝐬𝐢𝐧 𝒙 𝐜𝐨𝐬 𝒙 

⇔ 𝐬𝐢𝐧𝟐 𝒙 + 𝐜𝐨𝐬𝟐 𝒙 − 𝟐𝐬𝐢𝐧 𝒙 𝐜𝐨𝐬 𝒙 ≥ 𝟎 ⇔ (𝐬𝐢𝐧𝒙 − 𝐜𝐨𝐬 𝒙)𝟐 ≥ 𝟎 

Equality holds for 𝒙 =
𝝅

𝟒
⇔ 𝐬𝐢𝐧 𝒙 = 𝐜𝐨𝐬 𝒙 

√𝐥𝐨𝐠𝐬𝐢𝐧𝒙
𝟐 (

𝐬𝐢𝐧𝟐𝒙
𝐬𝐢𝐧𝒙 + 𝐜𝐨𝐬 𝒙) + 𝐥𝐨𝐠𝐜𝐨𝐬 𝒙

𝟐 (
𝐬𝐢𝐧𝟐𝒙

𝐬𝐢𝐧𝒙 + 𝐜𝐨𝐬 𝒙)

𝟐
≥ 𝟏 

𝐥𝐨𝐠𝐬𝐢𝐧𝒙
𝟐 (

𝐬𝐢𝐧𝟐𝒙
𝐬𝐢𝐧𝒙 + 𝐜𝐨𝐬 𝒙) + 𝐥𝐨𝐠𝐜𝐨𝐬 𝒙

𝟐 (
𝐬𝐢𝐧𝟐𝒙

𝐬𝐢𝐧𝒙 + 𝐜𝐨𝐬 𝒙)

𝟐
≥ 𝟏 

𝐥𝐨𝐠𝐬𝐢𝐧 𝒙
𝟐 (

𝐬𝐢𝐧 𝟐𝒙

𝐬𝐢𝐧 𝒙 + 𝐜𝐨𝐬 𝒙
) + 𝐥𝐨𝐠𝐜𝐨𝐬 𝒙

𝟐 (
𝐬𝐢𝐧𝟐𝒙

𝐬𝐢𝐧𝒙 + 𝐜𝐨𝐬 𝒙
) ≥ 𝟐 

 

SP.579 If 𝒇: [𝒂, 𝒃] → ℝ; 𝟎 < 𝑎 ≤ 𝑏; 𝑓 – continuous then: 

𝒃𝟒𝟎𝟒𝟕 − 𝒂𝟒𝟎𝟒𝟕

𝟒𝟎𝟒𝟕
+∫ 𝒇𝟐(𝒙𝟐𝟎𝟐𝟒)

𝒃

𝒂

𝒅𝒙 ≥
𝟏

𝟏𝟎𝟏𝟐
∫ 𝒇(𝒙)
𝒃𝟐𝟎𝟐𝟒

𝒂𝟐𝟎𝟐𝟒
𝒅𝒙 

Proposed by Daniel Sitaru – Romania  

Solution by proposer 

(𝒙𝟐𝟎𝟐𝟑 − 𝒇(𝒙𝟐𝟎𝟐𝟒))
𝟐

≥ 𝟎 ⇒ ∫ (𝒙𝟐𝟎𝟐𝟑 − 𝒇(𝒙𝟐𝟎𝟐𝟒))
𝟐

𝒅𝒙
𝒃

𝒂

≥ 𝟎 

∫ 𝒙𝟒𝟎𝟒𝟔
𝒃

𝒂
𝒅𝒙 + ∫ 𝒇𝟐(𝒙𝟐𝟎𝟐𝟒)

𝒃

𝒂
𝒅𝒙 − 𝟐∫ 𝒙𝟐𝟎𝟐𝟑

𝒃

𝒂
𝒇(𝒙𝟐𝟎𝟐𝟒)𝒅𝒙 ≥ 𝟎        (1) 

For the integral ∫ 𝒙𝟐𝟎𝟐𝟑
𝒃

𝒂
𝒇(𝒙𝟐𝟎𝟐𝟒)𝒅𝒙 denote: 

𝒚 = 𝒙𝟐𝟎𝟐𝟒 ⇒ 𝒅𝒚 = 𝟐𝟎𝟐𝟒𝒙𝟐𝟎𝟐𝟑𝒅𝒙 

If 𝒙 = 𝒂 ⇒ 𝒚 = 𝒂𝟐𝟎𝟐𝟒 
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If 𝒙 = 𝒃 ⇒ 𝒚 = 𝒃𝟐𝟎𝟐𝟒 

∫ 𝒙𝟐𝟎𝟐𝟑
𝒃

𝒂
𝒇(𝒙𝟐𝟎𝟐𝟒)𝒅𝒙 = ∫ 𝒇(𝒚)

𝒃𝟐𝟎𝟐𝟒

𝒂𝟐𝟎𝟐𝟒
⋅

𝟏

𝟐𝟎𝟐𝟒
𝒅𝒚 =

𝟏

𝟐𝟎𝟐𝟒
∫ 𝒇(𝒙)
𝒃𝟐𝟎𝟐𝟒

𝒂𝟐𝟎𝟐𝟒
𝒅𝒙      (2) 

Replacing (2) in (1): 

∫ 𝒙𝟒𝟎𝟒𝟕
𝒃

𝒂

𝒅𝒙 + ∫ 𝒇𝟐(𝒙𝟐𝟎𝟐𝟒)
𝒃

𝒂

𝒅𝒙 − 𝟐 ⋅
𝟏

𝟐𝟎𝟐𝟒
∫ 𝒇(𝒙)
𝒃𝟐𝟎𝟐𝟒

𝒂𝟐𝟎𝟐𝟒
𝒅𝒙 ≥ 𝟎 

𝒃𝟒𝟎𝟒𝟖 − 𝒂𝟒𝟎𝟒𝟖

𝟒𝟎𝟒𝟖
+ ∫ 𝒇𝟐(𝒙𝟐𝟎𝟐𝟒)

𝒃

𝒂

𝒅𝒙 ≥
𝟏

𝟏𝟎𝟏𝟐
∫ 𝒇(𝒙)
𝒃𝟐𝟎𝟐𝟒

𝒂𝟐𝟎𝟐𝟒
𝒅𝒙 

Equality holds for 𝒂 = 𝒃. 

 

SP.580 If 𝒂 ∈ ℝ;𝒎, 𝒏 ≥ 𝟏 then: 

(𝟐 + 𝐜𝐨𝐬 𝒂)𝒎+𝒏 + (𝟑 + 𝐜𝐨𝐬𝒂)𝒎 + (𝟑 + 𝐜𝐨𝐬 𝒂)𝒏 ≤ (𝟑 + 𝐜𝐨𝐬 𝒂)𝒎+𝒏 + 𝟏 

Proposed by Daniel Sitaru – Romania  

Solution by proposer 

Lemma 1: If 𝒙 > 1; 𝑝 ≥ 1 then: 

(𝒙 − 𝟏)𝒑 ≤ 𝒙𝒑 − 𝟏     (1) 

Proof. 

Let be 𝒇: (𝟏,∞) → ℝ; 𝒇(𝒙) = (𝒙 − 𝟏)𝒑 − 𝒙𝒑 + 𝟏 

𝒇′(𝒙) = 𝒑(𝒙 − 𝟏)𝒑−𝟏 − 𝒑𝒙𝒑−𝟏 = 𝒑((𝒙 − 𝟏)𝒑−𝟏 − 𝒙𝒑−𝟏) < 0 

because 𝒙 − 𝟏 < 𝑥; (∀)𝒙 > 1 

𝒇 decreasing on (𝟏,∞) 

𝐬𝐮𝐩
𝒙>1

𝒇(𝒙) = 𝐥𝐢𝐦
𝒙→𝟏
𝒙>1

𝒇(𝒙) = 𝐥𝐢𝐦
𝒙→𝟏
𝒙>1

((𝒙 − 𝟏)𝒑 − 𝒙𝒑 + 𝟏) = 

= (𝟏 − 𝟏)𝒑 − 𝟏𝒑 + 𝟏 = −𝟏 + 𝟏 = 𝟎 

𝒇(𝒙) ≤ 𝟎; (∀)𝒙 > 1 ⇒ (𝒙 − 𝟏)𝒑 − 𝒙𝒑 + 𝟏 ≤ 𝟎 

(𝒙 − 𝟏)𝒑 ≤ 𝒙𝒑 − 𝟏 

Equality holds for 𝒑 = 𝟏. 

Lemma 2: If 𝒙 > 1;𝑚, 𝑛 ≥ 1 then: 

(𝒙 − 𝟏)𝒎+𝒏 + 𝒙𝒎 + 𝒙𝒏 ≤ 𝒙𝒎+𝒏 + 𝟏       (2) 
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By (1): 

(𝒙 − 𝟏)𝒎 ≤ 𝒙𝒎 − 𝟏       (3) 

(𝒙 − 𝟏)𝒏 ≤ 𝒙𝒏 − 𝟏   (4) 

By multiplying (3); (4): 

(𝒙 − 𝟏)𝒎 ⋅ (𝒙 − 𝟏)𝒏 ≤ (𝒙𝒎 − 𝟏)(𝒙𝒏 − 𝟏) 

(𝒙 − 𝟏)𝒎+𝒏 ≤ 𝒙𝒎+𝒏 − 𝒙𝒎 − 𝒙𝒏 + 𝟏 

(𝒙 − 𝟏)𝒎+𝒏 + 𝒙𝒎 + 𝒙𝒏 ≤ 𝒙𝒎+𝒏 + 𝟏 

Back to the problem: 

We take 𝒙 = 𝟑 + 𝐜𝐨𝐬𝒂 > 1 in (2): 

(𝟑 + 𝐜𝐨𝐬𝒂 − 𝟏)𝒎+𝒏 + (𝟑 + 𝐜𝐨𝐬𝒂)𝒎 + (𝟑 + 𝐜𝐨𝐬𝒂)𝒏 ≤ (𝟑 + 𝐜𝐨𝐬 𝒂)𝒎+𝒏 + 𝟏 

(𝟐 + 𝐜𝐨𝐬 𝒂)𝒎+𝒏 + (𝟑 + 𝐜𝐨𝐬𝒂)𝒎 + (𝟑 + 𝐜𝐨𝐬𝒂)𝒏 ≤ (𝟑 + 𝐜𝐨𝐬 𝒂)𝒎+𝒏 + 𝟏 

Equality holds for 𝒎 = 𝒏 = 𝟏: 

(𝟐 + 𝐜𝐨𝐬 𝒂)𝟐 + (𝟑 + 𝐜𝐨𝐬𝒂)𝟏 + (𝟑 + 𝐜𝐨𝐬𝒂)𝟏 = (𝟑 + 𝐜𝐨𝐬𝒂)𝟐 + 𝟏 

𝟒 + 𝟒𝐜𝐨𝐬𝒂 + 𝐜𝐨𝐬𝟐 𝒂 + 𝟔 + 𝟐𝐜𝐨𝐬 𝒂 = 𝟗 + 𝐜𝐨𝐬𝟐 𝒂 + 𝟔 𝐜𝐨𝐬𝒂 + 𝟏 

𝐜𝐨𝐬𝟐 𝒂 + 𝟔𝐜𝐨𝐬𝒂 + 𝟏𝟎 = 𝐜𝐨𝐬𝟐 𝒂 + 𝟔𝐜𝐨𝐬𝒂 + 𝟏𝟎 

SP.581 If 𝒙, 𝒚, 𝒛 ≥ 𝟏 then: 

(
𝟏

𝒙
+
𝟏

𝒚
+
𝟏

𝒛
+ 𝒙𝒚𝒛) (

𝟏

𝒙
+
𝟐

𝒚
+ 𝒙𝒚𝟐) ≥ (𝒙 + 𝒚 + 𝒛 +

𝟏

𝒙𝒚𝒛
) (𝒙 + 𝟐𝒚 +

𝟏

𝒙𝒚𝟐
) 

Proposed by Daniel Sitaru – Romania  

Solution 1 by Soumava Chakraborty-Kolkata-India 

(
𝟏

𝒙
+
𝟏

𝐲
+
𝟏

𝐳
+ 𝒙𝐲𝐳) (

𝟏

𝒙
+
𝟐

𝐲
+ 𝒙𝐲𝟐) ≥ (𝒙 + 𝐲 + 𝐳 +

𝟏

𝒙𝐲𝐳
)(𝒙 + 𝟐𝐲 +

𝟏

𝒙𝐲𝟐
) 

⇔

𝟏
𝒙 +

𝟏
𝐲 +

𝟏
𝐳 + 𝒙𝐲𝐳

𝒙 + 𝐲 + 𝐳 +
𝟏
𝒙𝐲𝐳

− 𝟏 ≥
𝒙 + 𝟐𝐲 +

𝟏
𝒙𝐲𝟐

𝟏
𝒙 +

𝟐
𝐲 + 𝒙𝐲

𝟐
− 𝟏 ⇔

𝒙𝟐𝐲𝟐𝐳𝟐 − 𝟏 + ∑ 𝒙𝐲𝐜𝐲𝐜 − 𝒙𝐲𝐳(∑ 𝒙𝐜𝐲𝐜 )

𝒙𝐲𝐳 (𝒙 + 𝐲 + 𝐳 +
𝟏
𝒙𝐲𝐳)

 

≥
(𝒙𝟐𝐲𝟐 − 𝒙𝟐𝐲𝟒) + (𝟏 − 𝐲𝟐) − (𝟐𝒙𝐲 − 𝟐𝒙𝐲𝟑)

𝒙𝐲𝟐 (
𝟏
𝒙
+
𝟐
𝐲
+ 𝒙𝐲𝟐)

 

⇔
∏ (𝒂 + 𝟏)𝟐𝐜𝐲𝐜 − 𝟏 + ∑ ((𝒂 + 𝟏)(𝐛 + 𝟏))𝐜𝐲𝐜 −∏ (𝒂 + 𝟏)𝐜𝐲𝐜 . (∑ (𝒂 + 𝟏)𝐜𝐲𝐜 )

𝒙𝐲𝐳 (𝒙 + 𝐲 + 𝐳 +
𝟏
𝒙𝐲𝐳)

≥ 
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(𝒙𝟐𝐲𝟐 − 𝒙𝟐𝐲𝟒) + (𝟏 − 𝐲𝟐) − (𝟐𝒙𝐲 − 𝟐𝒙𝐲𝟑)

𝒙𝐲𝟐 (
𝟏
𝒙 +

𝟐
𝐲 + 𝒙𝐲

𝟐)
 (𝒙 = 𝒂 + 𝟏, 𝐲 = 𝐛 + 𝟏, 𝐳 = 𝐜 + 𝟏) 

⇔
𝒂𝟐𝐛𝟐𝐜𝟐 + 𝟐𝒂𝐛𝐜∑ 𝒂𝐛𝐜𝐲𝐜 + (∑ 𝒂𝐛𝐜𝐲𝐜 )

𝟐
+ 𝒂𝐛𝐜∑ 𝒂𝐜𝐲𝐜 +∑ 𝒂𝟐𝐛𝐜𝐲𝐜 + ∑ 𝒂𝐛𝟐𝐜𝐲𝐜 + 𝟐𝒂𝐛𝐜

𝒙𝐲𝐳 (𝒙 + 𝐲 + 𝐳 +
𝟏
𝒙𝐲𝐳)

 

≥
(𝟏 − 𝐲𝟐)(𝒙𝟐𝐲𝟐 − 𝟐𝒙𝐲 + 𝟏)

𝒙𝐲𝟐 (
𝟏
𝒙 +

𝟐
𝐲 + 𝒙𝐲

𝟐)
 

⇔
𝒂𝟐𝐛𝟐𝐜𝟐 + 𝟐𝒂𝐛𝐜∑ 𝒂𝐛𝐜𝐲𝐜 + (∑ 𝒂𝐛𝐜𝐲𝐜 )

𝟐
+ 𝒂𝐛𝐜∑ 𝒂𝐜𝐲𝐜 +∑ 𝒂𝟐𝐛𝐜𝐲𝐜 + ∑ 𝒂𝐛𝟐𝐜𝐲𝐜 + 𝟐𝒂𝐛𝐜

𝒙𝐲𝐳 (𝒙 + 𝐲 + 𝐳 +
𝟏
𝒙𝐲𝐳)

 

≥
(∗) −(𝐲𝟐 − 𝟏)(𝒙𝐲 − 𝟏)𝟐

𝒙𝐲𝟐 (
𝟏
𝒙 +

𝟐
𝐲 + 𝒙𝐲

𝟐)
→ 𝐭𝐫𝐮𝐞 ∵ 𝒙, 𝐲, 𝐳 ≥ 𝟏 ⇒ 𝒂,𝐛, 𝐜 ≥ 𝟎 ⇒ 𝐋𝐇𝐒 𝐨𝐟 (∗) ≥ 𝟎 

≥
−(𝐲𝟐 − 𝟏)(𝒙𝐲 − 𝟏)𝟐

𝒙𝐲𝟐 (
𝟏
𝒙 +

𝟐
𝐲 + 𝒙𝐲

𝟐)
 (∵ −(𝐲𝟐 − 𝟏) ≤ 𝟎) ⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 

∴ (
𝟏

𝒙
+
𝟏

𝐲
+
𝟏

𝐳
+ 𝒙𝐲𝐳)(

𝟏

𝒙
+
𝟐

𝐲
+ 𝒙𝐲𝟐) ≥ (𝒙 + 𝐲 + 𝐳 +

𝟏

𝒙𝐲𝐳
)(𝒙 + 𝟐𝐲 +

𝟏

𝒙𝐲𝟐
) 

∀ 𝒙, 𝐲, 𝐳 ≥ 𝟏,′′ =′′  𝐢𝐟𝐟 𝒙 = 𝐲 = 𝟏 (𝐐𝐄𝐃) 
 

Solution 2 by proposer 

If 𝒙, 𝒚 ≥ 𝟏 ⇒ 𝒙𝒚 ≥ 𝟏 ⇒ 𝒙𝒚 − 𝟏 ≥ 𝟎; 𝒙 − 𝟏 ≥ 𝟎; 𝒚 − 𝟏 ≥ 𝟎 

We will prove that: 

𝟏

𝒙
+

𝟏

𝒚
+ 𝒙𝒚 ≥ 𝒙 + 𝒚 +

𝟏

𝒙𝒚
     (1) 

𝒚 + 𝒙 + 𝒙𝟐𝒚𝟐 ≥ 𝒙𝟐𝒚 + 𝒙𝒚𝟐 + 𝟏 

𝒙𝟐𝒚𝟐 − 𝟏 + 𝒙 − 𝒙𝟐𝒚 + 𝒚 − 𝒙𝒚𝟐 ≥ 𝟎 

(𝒙𝒚 − 𝟏)(𝒙𝒚 + 𝟏) − 𝒙(𝒙𝒚 − 𝟏) − 𝒚(𝒙𝒚 − 𝟏) ≥ 𝟎 

(𝒙𝒚 − 𝟏)(𝒙𝒚 + 𝟏 − 𝒙 − 𝒚) ≥ 𝟎 

(𝒙𝒚 − 𝟏)(𝒙(𝒚 − 𝟏) − (𝒚 − 𝟏)) ≥ 𝟎 

(𝒙𝒚 − 𝟏)(𝒚 − 𝟏)(𝒙 − 𝟏) ≥ 𝟎    (True) 

We will prove that: 

𝟏

𝒙
+

𝟏

𝒚
+

𝟏

𝒛
+ 𝒙𝒚𝒛 ≥ 𝒙 + 𝒚 + 𝒛 +

𝟏

𝒙𝒚𝒛
         (2) 
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𝟏

𝒙
+
𝟏

𝒚
+
𝟏

𝒛
+ 𝒙𝒚𝒛 =

𝟏

𝒙
+
𝟏

𝒚
+ 𝒙𝒚 − 𝒙𝒚 +

𝟏

𝒛
+ 𝒙𝒚𝒛 ≥ 

≥
(𝟏)

𝒙 + 𝒚 +
𝟏

𝒙𝒚
− 𝒙𝒚+

𝟏

𝒛
+ 𝒙𝒚𝒛 

Remains to prove that: 

𝒙 + 𝒚 +
𝟏

𝒙𝒚
− 𝒙𝒚 +

𝟏

𝒛
+ 𝒙𝒚𝒛 ≥ 𝒙 + 𝒚 + 𝒛 +

𝟏

𝒙𝒚𝒛
 

𝟏

𝒙𝒚
− 𝒙𝒚 +

𝟏

𝒛
+ 𝒙𝒚𝒛 − 𝒛 −

𝟏

𝒙𝒚𝒛
≥ 𝟎 

𝟏

𝒙𝒚
(𝟏 −

𝟏

𝒛
) + 𝒙𝒚(𝒛 − 𝟏) −

𝒛𝟐 − 𝟏

𝒛
≥ 𝟎 

𝟏

𝒙𝒚𝒛
⋅ (𝒛 − 𝟏) + 𝒙𝒚(𝒛 − 𝟏) −

(𝒛 − 𝟏)(𝒛 + 𝟏)

𝒛
≥ 𝟎 

(𝒛 − 𝟏) (
𝟏

𝒙𝒚𝒛
+ 𝒙𝒚−

𝒛 + 𝟏

𝒛
) ≥ 𝟎 

(𝒛 − 𝟏) (
𝟏

𝒙𝒚𝒛
−
𝟏

𝒛
+ 𝒙𝒚 − 𝟏) ≥ 𝟎 

(𝒛 − 𝟏) (
𝟏 − 𝒙𝒚

𝒙𝒚𝒛
+ 𝒙𝒚 − 𝟏) ≥ 𝟎 

(𝒛 − 𝟏)(𝒙𝒚𝒛(𝒙𝒚 − 𝟏) − (𝒙𝒚 − 𝟏)) ≥ 𝟎 

(𝒛 − 𝟏)(𝒙𝒚 − 𝟏)(𝒙𝒚𝒛 − 𝟏) ≥ 𝟎    (True) 

Let 𝒚 = 𝒛 in (2): 

𝟏

𝒙
+
𝟏

𝒚
+
𝟏

𝒚
+ 𝒙𝒚𝒚 ≥ 𝒙+ 𝒚 + 𝒚 +

𝟏

𝒙𝒚𝒚
 

𝟏

𝒙
+

𝟐

𝒚
+ 𝒙𝒚𝟐 ≥ 𝒙 + 𝟐𝒚 +

𝟏

𝒙𝒚𝟐
       (3) 

By multiplying (2); (3): 

(
𝟏

𝒙
+
𝟏

𝒚
+
𝟏

𝒛
+ 𝒙𝒚𝒛) (

𝟏

𝒙
+
𝟐

𝒚
+ 𝒙𝒚𝟐) ≥ (𝒙 + 𝒚 + 𝒛 +

𝟏

𝒙𝒚𝒛
) (𝒙 + 𝟐𝒚 +

𝟏

𝒙𝒚𝟐
) 

Equality holds for 𝒙 = 𝒚 = 𝒛 = 𝟏. 
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SP.582 If 𝟎 < 𝑎 ≤ 𝑏 then: 

∫ (𝐬𝐢𝐧 𝒙)𝟐 𝐬𝐢𝐧
𝟐 𝒙

𝒃

𝒂

⋅ (𝟏 − 𝐬𝐢𝐧𝟐 𝒙)𝟏−𝐬𝐢𝐧
𝟐𝒙𝒅𝒙 ≥

𝒃 − 𝒂

𝟐
 

Proposed by Daniel Sitaru – Romania  

Solution 1 by Tapas Das-India 

(𝐬𝐢𝐧 𝒙)𝟐 𝐬𝐢𝐧
𝟐 𝒙(𝟏 − 𝐬𝐢𝐧𝟐 𝒙)𝟏−𝐬𝐢𝐧

𝟐 𝒙 = (𝐬𝐢𝐧𝟐 𝒙)𝐬𝐢𝐧
𝟐 𝒙(𝐜𝐨𝐬𝟐 𝒙)𝐜𝐨𝐬

𝟐 𝒙 ≥
𝑮𝑴−𝑯𝑴

 

≥  (
𝐬𝐢𝐧𝟐 𝒙 + 𝐜𝐨𝐬𝟐 𝒙

𝐬𝐢𝐧𝟐 𝒙
𝐬𝐢𝐧𝟐 𝒙

+
𝐜𝐨𝐬𝟐 𝒙
𝐜𝐨𝐬𝟐 𝒙

)

𝐬𝐢𝐧𝟐𝒙+𝐜𝐨𝐬𝟐 𝒙

=
𝟏

𝟐
 (𝟏) 

∫ (𝐬𝐢𝐧𝒙)𝟐 𝐬𝐢𝐧
𝟐 𝒙(𝟏 − 𝐬𝐢𝐧𝟐 𝒙)𝟏−𝐬𝐢𝐧

𝟐 𝒙 𝒅𝒙
𝒃

𝒂

≥
(𝟏)

 ∫ (
𝟏

𝟐
 ) 𝒅𝒙

𝒃

𝒂

=
𝒃 − 𝒂

𝟐
  

Equality holds for 𝒂 = 𝒃. 

Solution 2 by proposer 

By weighted AM-GM: 

𝒂𝟏
𝒃𝟏 ⋅ 𝒂𝟐

𝒃𝟐 ≤
𝒂𝟏𝒃𝟏 + 𝒂𝟐𝒃𝟐
𝒃𝟏 + 𝒃𝟐

; 𝒂𝟏, 𝒂𝟐, 𝒃𝟏, 𝒃𝟐 > 0 

For: 𝒂𝟏 =
𝟏

𝐬𝐢𝐧𝟐 𝒙
; 𝒂𝟐 =

𝟏

𝐜𝐨𝐬𝟐 𝒙
; 𝒃𝟏 = 𝐬𝐢𝐧𝟐 𝒙 ; 𝒃𝟐 = 𝐜𝐨𝐬𝟐 𝒙 

(
𝟏

𝐬𝐢𝐧𝟐 𝒙
)
𝐬𝐢𝐧𝟐 𝒙

⋅ (
𝟏

𝐜𝐨𝐬𝟐 𝒙
)
𝐜𝐨𝐬𝟐 𝒙

≤

𝟏
𝐬𝐢𝐧𝟐 𝒙

⋅ 𝐬𝐢𝐧𝟐 𝒙 +
𝟏

𝐜𝐨𝐬𝟐 𝒙
⋅ 𝐜𝐨𝐬𝟐 𝒙

𝐬𝐢𝐧𝟐 𝒙 + 𝐜𝐨𝐬𝟐 𝒙
 

𝟏

(𝐬𝐢𝐧𝟐 𝒙)𝐬𝐢𝐧
𝟐𝒙
⋅

𝟏

(𝐜𝐨𝐬𝟐 𝒙)𝐜𝐨𝐬
𝟐 𝒙
≤
𝟏 + 𝟏

𝟏
= 𝟐 

𝟏

(𝐬𝐢𝐧𝒙)𝟐 𝐬𝐢𝐧
𝟐 𝒙 ⋅ (𝟏 − 𝐬𝐢𝐧𝟐 𝒙)𝟏−𝐬𝐢𝐧

𝟐 𝒙
≤ 𝟐 

(𝐬𝐢𝐧 𝒙)𝟐 𝐬𝐢𝐧
𝟐 𝒙 ⋅ (𝟏 − 𝐬𝐢𝐧𝟐 𝒙)𝟏−𝐬𝐢𝐧

𝟐 𝒙 ≥
𝟏

𝟐
 

∫ (𝐬𝐢𝐧 𝒙)𝟐𝐬𝐢𝐧
𝟐 𝒙

𝒃

𝒂

⋅ (𝟏 − 𝐬𝐢𝐧𝟐 𝒙)𝟏−𝐬𝐢𝐧
𝟐 𝒙𝒅𝒙 ≥ ∫

𝟏

𝟐

𝒃

𝒂

𝒅𝒙 =
𝒃 − 𝒂

𝟐
 

Equality holds for 𝒂 = 𝒃. 
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SP.583 Prove that if 𝒙, 𝒚, 𝒛 ≥ 𝟏 then: 

𝟐 (
𝟏

𝒙
+
𝟏

𝒚
+
𝟏

𝒛
) + 𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙 ≥ 𝟐(𝒙 + 𝒚 + 𝒛) +

𝟏

𝒙𝒚
+
𝟏

𝒚𝒛
+
𝟏

𝒛𝒙
 

Proposed by Daniel Sitaru – Romania  

Solution 1 by Soumava Chakraborty-Kolkata-India 

𝐃𝐞𝐬𝐢𝐫𝐞𝐝 𝐢𝐧𝐞𝐪𝐮𝒂𝒍𝐢𝐭𝐲 ⇔
𝟐(∑ 𝒙𝐲𝐜𝐲𝐜 − 𝒙𝐲𝐳∑ 𝒙𝐜𝐲𝐜 )

𝒙𝐲𝐳
≥
∑ 𝒙𝐜𝐲𝐜 − 𝒙𝐲𝐳∑ 𝒙𝐲𝐜𝐲𝐜

𝒙𝐲𝐳
 

⇔ (∑𝒙𝐲

𝐜𝐲𝐜

)(𝟐 + 𝒙𝐲𝐳) ≥ (∑𝒙

𝐜𝐲𝐜

)(𝟏 + 𝟐𝒙𝐲𝐳) ⇔
∑ 𝒙𝐲𝐜𝐲𝐜

∑ 𝒙𝐜𝐲𝐜
− 𝟏 ≥

𝟏 + 𝟐𝒙𝐲𝐳

𝟐 + 𝒙𝐲𝐳
− 𝟏 

⇔
∑ ((𝒂 + 𝟏)(𝐛 + 𝟏))𝐜𝐲𝐜 −∑ (𝒂 + 𝟏)𝐜𝐲𝐜

∑ 𝒂𝐜𝐲𝐜 + 𝟑
≥
(𝒂+ 𝟏)(𝐛 + 𝟏)(𝐜 + 𝟏) − 𝟏

𝟐 + (𝒂 + 𝟏)(𝐛 + 𝟏)(𝐜 + 𝟏)
 

(𝒙 = 𝒂 + 𝟏, 𝐛 = 𝐲 + 𝟏, 𝐜 = 𝐳 + 𝟏) ⇔
∑ 𝒂𝐛𝐜𝐲𝐜 +∑ 𝒂𝐜𝐲𝐜

∑ 𝒂𝐜𝐲𝐜 + 𝟑
≥

∑ 𝒂𝐜𝐲𝐜 +∑ 𝒂𝐛𝐜𝐲𝐜 + 𝒂𝐛𝐜

𝟑 + 𝒂𝐛𝐜 + ∑ 𝒂𝐜𝐲𝐜 +∑ 𝒂𝐛𝐜𝐲𝐜
 

⇔ 𝟑∑𝒂𝐛

𝐜𝐲𝐜

+ 𝟑∑𝒂

𝐜𝐲𝐜

+ 𝒂𝐛𝐜∑𝒂𝐛

𝐜𝐲𝐜

+ 𝒂𝐛𝐜∑𝒂

𝐜𝐲𝐜

+ 𝟐(∑𝒂

𝐜𝐲𝐜

)(∑𝒂𝐛

𝐜𝐲𝐜

) + (∑𝒂

𝐜𝐲𝐜

)

𝟐

+ 

(∑𝒂𝐛

𝐜𝐲𝐜

)

𝟐

≥ (∑𝒂

𝐜𝐲𝐜

)

𝟐

+(∑𝒂

𝐜𝐲𝐜

)(∑𝒂𝐛

𝐜𝐲𝐜

) + 𝒂𝐛𝐜∑𝒂

𝐜𝐲𝐜

+ 𝟑∑𝒂

𝐜𝐲𝐜

+ 𝟑∑𝒂𝐛

𝐜𝐲𝐜

+ 

𝟑𝒂𝐛𝐜 ⇔ 𝒂𝐛𝐜∑𝒂𝐛

𝐜𝐲𝐜

+(∑𝒂

𝐜𝐲𝐜

)(∑𝒂𝐛

𝐜𝐲𝐜

) + (∑𝒂𝐛

𝐜𝐲𝐜

)

𝟐

≥
(∗)

𝟑𝒂𝐛𝐜 

𝐖𝐞 𝐬𝐡𝒂𝒍𝒍 𝐧𝐨𝐰 𝐩𝐫𝐨𝐯𝐞 𝐭𝐡𝒂𝐭 ∶ 𝐟𝐨𝐫 𝐦, 𝐧, 𝐩 ≥ 𝟎,𝐰𝐞 𝐡𝒂𝐯𝐞 ∶ ∑𝐦

𝐜𝐲𝐜

≥ 𝟑. √𝐦𝐧𝐩
𝟑 → (𝟏) 

𝐍𝐨𝐰, 𝐢𝐟 𝐦, 𝐧, 𝐩 > 0, 𝐭𝐡𝐞𝐧, 𝐯𝐢𝒂 𝐀𝐌 − 𝐆𝐌,∑𝐦

𝐜𝐲𝐜

≥ 𝟑. √𝐦𝐧𝐩
𝟑  𝒂𝐧𝐝 𝐢𝐟 ∶ 

𝐞𝒙𝒂𝐜𝐭𝒍𝐲 𝐨𝐧𝐞 𝐨𝐫 𝐞𝒙𝒂𝐜𝐭𝒍𝐲 𝐭𝐰𝐨 𝐯𝒂𝐫𝐢𝒂𝐛𝒍𝐞𝐬 = 𝟎, 𝐭𝐡𝐞𝐧 ∶ ∑𝐦

𝐜𝐲𝐜

> 0 = 3. √𝐦𝐧𝐩
𝟑  𝒂𝐧𝐝 𝐢𝐟 ∶ 

𝐦 = 𝐧 = 𝐩 = 𝟎, 𝐭𝐡𝐞𝐧 ∶ ∑𝐦

𝐜𝐲𝐜

= 𝟑. √𝐦𝐧𝐩
𝟑 = 𝟎 𝒂𝐧𝐝 𝐡𝐞𝐧𝐜𝐞, (𝟏) 𝐢𝐬 𝐭𝐫𝐮𝐞 ∀ 𝐦, 𝐧, 𝐩 ≥ 𝟎 

𝒂𝐧𝐝 𝐩𝐥𝐮𝐠𝐠𝐢𝐧𝐠 𝐢𝐧 ∶ 𝐦 = 𝒂,𝐧 = 𝐛, 𝐩 = 𝐜 𝒂𝐧𝐝 𝐦 = 𝒂𝐛,𝐧 = 𝐛𝐜, 𝐩 = 𝐜𝒂 𝐬𝐮𝐜𝐜𝐞𝐬𝐬𝐢𝐯𝐞𝒍𝐲, 

𝐰𝐞 𝐠𝐞𝐭 ∶ (∑𝒂

𝐜𝐲𝐜

)(∑𝒂𝐛

𝐜𝐲𝐜

) ≥ (𝟑. √𝒂𝐛𝐜
𝟑

) (𝟑. √𝒂𝟐𝐛𝟐𝐜𝟐
𝟑

) = 𝟗𝒂𝐛𝐜 
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∴ 𝐋𝐇𝐒 𝐨𝐟 (∗) − 𝐑𝐇𝐒 𝐨𝐟 (∗) = 𝒂𝐛𝐜∑𝒂𝐛

𝐜𝐲𝐜

+ 𝟔𝒂𝐛𝐜 + (∑𝒂𝐛

𝐜𝐲𝐜

)

𝟐

≥ 𝟎 (∵ 𝒂, 𝐛, 𝐜 ≥ 𝟎) 

∴ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 ⇒ 𝟐(
𝟏

𝒙
+
𝟏

𝐲
+
𝟏

𝐳
) + 𝒙𝐲 + 𝐲𝐳 + 𝒛𝒙 ≥ 𝟐(𝒙 + 𝐲 + 𝐳) +

𝟏

𝒙𝐲
+
𝟏

𝐲𝐳
+
𝟏

𝐳𝒙
 

∀ 𝒙, 𝐲, 𝐳 ≥ 𝟏, ′′ =′′  𝐢𝐟𝐟 𝒙 = 𝐲 = 𝐳 = 𝟏 (𝐐𝐄𝐃) 
 

Solution 2 by proposer 

If 𝒙, 𝒚 ≥ 𝟏 ⇒ 𝒙𝒚 ≥ 𝟏 ⇒ 𝒙𝒚 − 𝟏 ≥ 𝟎; 𝒙 − 𝟏 ≥ 𝟎; 𝒚 − 𝟏 ≥ 𝟎 

We will prove that: 

𝟏

𝒙
+

𝟏

𝒚
+ 𝒙𝒚 ≥ 𝒙 + 𝒚 +

𝟏

𝒙𝒚
         (1) 

𝒚 + 𝒙 + 𝒙𝟐𝒚𝟐 ≥ 𝒙𝟐𝒚 + 𝒙𝒚𝟐 + 𝟏, 𝒙𝟐𝒚𝟐 − 𝟏 + 𝒙 − 𝒙𝟐𝒚 + 𝒚 − 𝒙𝒚𝟐 ≥ 𝟎 

(𝒙𝒚 − 𝟏)(𝒙𝒚 + 𝟏) − 𝒙(𝒙𝒚 − 𝟏) − 𝒚(𝒙𝒚 − 𝟏) ≥ 𝟎 

(𝒙𝒚 − 𝟏)(𝒙𝒚 + 𝟏 − 𝒙 − 𝒚) ≥ 𝟎 

(𝒙𝒚 − 𝟏)(𝒙(𝒚 − 𝟏) − (𝒚 − 𝟏)) ≥ 𝟎 

(𝒙𝒚 − 𝟏)(𝒚 − 𝟏)(𝒙 − 𝟏) > 0  (true) 

Analogous with (1): 

𝟏

𝒚
+

𝟏

𝒛
+ 𝒚𝒛 ≥ 𝒚 + 𝒛 +

𝟏

𝒚𝒛
         (2) 

𝟏

𝒛
+

𝟏

𝒙
+ 𝒙𝒛 ≥ 𝒛 + 𝒙 +

𝟏

𝒙𝒛
    (3) 

By adding (1); (2); (3): 

𝟐(
𝟏

𝒙
+
𝟏

𝒚
+
𝟏

𝒛
) + 𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙 ≥ 𝟐(𝒙 + 𝒚 + 𝒛) +

𝟏

𝒙𝒚
+
𝟏

𝒚𝒛
+
𝟏

𝒙𝒛
 

Equality holds for 𝒙 = 𝒚 = 𝒛. 

SP.584 Let be the sequence (𝒙𝒏)𝒏 ≥ 𝟏 defined by 

𝒙𝟏 = 𝟏, 𝒙𝒏+𝟐 = 𝟑𝒙𝒏+𝟏 − 𝒙𝒏, ∀𝒏 ∈ ℕ. Find: 

𝑳 = 𝐥𝐢𝐦
𝒏→∞

√∑
𝒙𝟐𝒌+𝟏

𝒙𝒌 + 𝒙𝒌+𝟏

𝒏

𝒌=𝟎

𝒏

 

Proposed by Marian Ursărescu and Florică Anastase – Romania  
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Solution by proposers 

The sequence (𝒙𝒏)𝒏≥𝟎 verify a recurrence relationship by second order, then 

𝒙𝒏 =
𝟏

√𝟓
[(
𝟑 + √𝟓

𝟐
)

𝒏

− (
𝟑 − √𝟓

𝟐
)

𝒏

] , ∀𝒏 ∈ ℕ. 

We show that: 𝒙𝟏 + 𝒙𝟑 + 𝒙𝟓 +⋯+ 𝒙𝟐𝒏−𝟏 = 𝒙𝒏
𝟐 , ∀𝒏 ∈ ℕ∗. We have: 

𝒙𝟏 + 𝒙𝟑 + 𝒙𝟓 +⋯+ 𝒙𝟐𝒏−𝟏 =
𝟏

√𝟓
∑(

𝟑 + √𝟓

𝟐
)

𝟐𝒌−𝟏𝒏

𝒌=𝟎

−
𝟏

√𝟓
∑(

𝟑 − √𝟓

𝟐
)

𝟐𝒌−𝟏𝒏

𝒌=𝟎

 

Using the formula of a geometrical progression, it follows: 

𝒙𝟏 + 𝒙𝟑 + 𝒙𝟓 +⋯+ 𝒙𝟐𝒏−𝟏 =
𝟏

𝟓
[(
𝟑 + √𝟓

𝟐
)

𝟐𝒏

+ (
𝟑 − √𝟓

𝟐
)

𝟐𝒏

− 𝟓] = 𝒙𝒏
𝟐  

{
𝒙𝟏 + 𝒙𝟑 + 𝒙𝟓 +⋯+ 𝒙𝟐𝒌−𝟏 = 𝒙𝒌

𝟐

𝒙𝟏 + 𝒙𝟑 + 𝒙𝟓 +⋯+ 𝒙𝟐𝒌+𝟏 = 𝒙𝒌+𝟏
𝟐

⟹
(−)

𝒙𝟐𝒌+𝟏 = 𝒙𝒌+𝟏
𝟐 − 𝒙𝒌

𝟐  or 
𝒙𝟐𝒌+𝟏

𝒙𝒌+𝒙𝒌+𝟏
= 𝒙𝒌+𝟏 − 𝒙𝒌 

∑
𝒙𝟐𝒌+𝟏

𝒙𝒌 + 𝒙𝒌+𝟏

𝒏

𝒌=𝟎

=∑(𝒙𝒌+𝟏 − 𝒙𝒌)

𝒏

𝒌=𝟎

= 𝒙𝒏+𝟏 

Therefore: 

𝐥𝐢𝐦
𝒏→∞

√𝒙𝒏+𝟏
𝒏 = 𝐥𝐢𝐦

𝒏→∞
√
𝟏

√𝟓
((
𝟑 + √𝟓

𝟐
)

𝒏+𝟏

− (
𝟑 + √𝟓

𝟐
)

𝒏+𝟏

)
𝒏

= 

= 𝐥𝐢𝐦
𝒏→∞

(
𝟑 + √𝟓

𝟐
) ⋅ √

𝟏

√𝟓
[
𝟑 + √𝟓

𝟐
− (

𝟑 − √𝟓

𝟑 + √𝟓
)(𝟑 − √𝟓)]

𝒏

=
𝟑 + √𝟓

𝟐
 

SP.585 Let 𝒇: [𝒏 − 𝟏, 𝒏] → [𝒏, 𝒏 + 𝟏] be a continuous function such that 

∫ (𝟏 + 𝒙𝒇′(𝒙))
𝒏

𝒏−𝟏

𝒅𝒙 ≤ 𝒏𝒇(𝒏) − (𝒏 − 𝟏)𝒇(𝒏 − 𝟏), 

then prove: 

∫
𝒅𝒙

𝒇(𝒙)

𝒏

𝒏−𝟏

≤
𝟐

𝒏 + 𝟏
, 𝒏 ∈ ℕ∗ 

Proposed by by Marian Ursărescu and Florică Anastase – Romania  
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Solution by proposer 

∫ (𝟏 + 𝒙𝒇′(𝒙))
𝒏

𝒏−𝟏

𝒅𝒙 ≤ 𝒏𝒇(𝒏) − (𝒏 − 𝟏)𝒇(𝒏 − 𝟏) ⇒ 

𝒏𝒇(𝒏) − (𝒏 − 𝟏)𝒇(𝒏 − 𝟏) −∫ 𝒙𝒇′(𝒙)
𝒏

𝒏−𝟏

𝒅𝒙 ≥ 𝟏 

But, using Integration by Parts method, we have: 

∫ 𝒙𝒇′(𝒙)
𝒏

𝒏−𝟏

= 𝒙𝒇(𝒙)|𝒏−𝟏
𝒏 −∫ 𝒇(𝒙)

𝒏

𝒏−𝟏

𝒅𝒙 

∫ 𝒙𝒇′(𝒙)
𝒏

𝒏−𝟏

𝒅𝒙 = 𝒏𝒇(𝒏) − (𝒏 − 𝟏)𝒇(𝒏 − 𝟏) − ∫ 𝒇(𝒙)
𝒏

𝒏−𝟏

𝒅𝒙 

∫ 𝒇(𝒙)
𝒏

𝒏−𝟏

𝒅𝒙 = 𝒏𝒇(𝒏) − (𝒏 − 𝟏)𝒇(𝒏 − 𝟏) − ∫ 𝒙𝒇′(𝒙)
𝒏

𝒏−𝟏

𝒅𝒙 ≥ 𝟏 

For all 𝒙 ∈ [𝒏 − 𝟏,𝒏] and 𝒏 ∈ ℕ∗ we have 
(𝒇(𝒙)−𝒏)(𝒇(𝒙)−𝒏−𝟏)

𝒇(𝒙)
≤ 𝟎 or 

𝒇(𝒙) − (𝟐𝒏 + 𝟏) +
𝒏(𝒏 + 𝟏)

𝒇(𝒙)
≤ 𝟎 ⇔

𝟏

𝒇(𝒙)
≤

𝟐𝒏 + 𝟏

𝒏(𝒏 + 𝟏)
−

𝟏

𝒏(𝒏 + 𝟏)
𝒇(𝒙) ⇔ 

∫
𝟏

𝒇(𝒙)

𝒏

𝒏−𝟏

𝒅𝒙 ≤
𝟐𝒏 + 𝟏

𝒏(𝒏 + 𝟏)
∫ 𝒅𝒙
𝒏

𝒏−𝟏

−
𝟏

𝒏(𝒏 + 𝟏)
∫ 𝒇(𝒙)
𝒏

𝒏−𝟏

𝒅𝒙 ⇔ 

∫
𝟏

𝒇(𝒙)

𝒏

𝒏−𝟏

𝒅𝒙 ≤
𝟐𝒏 + 𝟏

𝒏(𝒏 + 𝟏)
(𝒏(𝒏 − 𝟏)) −

𝟏

𝒏(𝒏 + 𝟏)
⇔ 

∫
𝟏

𝒇(𝒙)

𝒏

𝒏−𝟏

𝒅𝒙 ≤
𝟐𝒏 + 𝟏

𝒏(𝒏 + 𝟏)
−

𝟏

𝒏(𝒏 + 𝟏)
⇔ ∫

𝟏

𝒇(𝒙)

𝒏

𝒏−𝟏

𝒅𝒙 ≤
𝟐

𝒏 + 𝟏
 

UNDERGRADUATE PROBLEMS 

UP.571 Prove that is the least value of the constant 𝒌 > 2 such that: 

(𝒂𝒌 + 𝒃𝒌 + 𝒄𝒌) (
𝟏

𝒂
+
𝟏

𝒃
+
𝟏

𝒄
) ≥ 𝟗 

for any positive real numbers 𝒂, 𝒃, 𝒄 with at most one of them less than 𝟏 and 

𝒂𝟓 + 𝒃𝟓 + 𝒄𝟓 = 𝟑 

Proposed by Vasile Cîrtoaje – Romania  
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Solution by proposer 

By choosing 𝒃 = 𝟏, 𝒄 ∈ (𝟎, 𝟏] and 𝒂 = √𝟐 − 𝒄𝟓
𝟓

, the constraints are satisfied, and the 

inequality is equivalent to 𝑬(𝒄) ≥ 𝟎, where 

𝑬(𝒄) = (𝒂𝒌 + 𝒄𝒌 + 𝟏) (
𝟏

𝒂
+
𝟏

𝒄
+ 𝟏) − 𝟗. 

Note that 𝒄 = 𝟏 implies 𝒂 = 𝟏. From 𝒂𝟓 + 𝒄𝟓 = 𝟐, we get 

𝒂′(𝒄) =
−𝒄𝟒

𝒂𝟒
,    𝒂′(𝟏) = −𝟏, 

𝒂′′(𝒄) =
𝟒𝒄𝟒𝒂′

𝒂𝟓
−
𝟒𝒄𝟑

𝒂𝟒
,    𝒂′′(𝟏) = −𝟖, 

and  

𝑬′(𝒄) = 𝒌(𝒂𝒌−𝟏𝒂′ + 𝒄𝒌−𝟏) (
𝟏

𝒂
+
𝟏

𝒄
+ 𝟏) + (𝒂𝒌 + 𝒄𝒌 + 𝟏) (

−𝒂′

𝒂𝟐
−
𝟏

𝒄𝟐
), 

𝑬′′(𝒄) = 𝒌[(𝒌 − 𝟏)𝒂𝒌−𝟐(𝒂′)𝟐 + 𝒂𝒌−𝟏𝒂′′ + (𝒌 − 𝟏)𝒄𝒌−𝟐] (
𝟏

𝒂
+
𝟏

𝒄
+ 𝟏) 

+𝟐𝒌(𝒂𝒌−𝟏𝒂′ + 𝒄𝒌−𝟏) (
−𝒂′

𝒂𝟐
−
𝟏

𝒄𝟐
) + (𝒂𝒌 + 𝒄𝒌 + 𝟏) (

−𝒂′′

𝒂𝟐
+
𝟐(𝒂′)𝟐

𝒂𝟑
+
𝟐

𝒄𝟑
). 

We have 𝑬(𝟏) = 𝟎,𝑬′(𝟏) = 𝟎 and 

𝑬′′(𝟏) = 𝟑𝒌(𝒌 − 𝟏 − 𝟖 + 𝒌− 𝟏) + 𝟎 + 𝟑(𝟖 + 𝟐 + 𝟐) = 𝟔(𝒌 − 𝟐)(𝒌 − 𝟑). 

Since 𝑬(𝟏) = 𝑬′(𝟏) = 𝟎, the condition 𝑬′′(𝟏) ≥ 𝟎 is necessary to have 𝑬(𝒄) ≥ 𝟎 for  

𝒄 ∈ (𝟎, 𝟏]. This condition implies 𝒌 ≥ 𝟑. To show that 𝟑 is the least value of the constant 

𝒌. we need to show that 𝑭 ≥ 𝟎, where 

𝑭 = (𝒂𝟑 + 𝒃𝟑 + 𝒄𝟑) (
𝟏

𝒂
+
𝟏

𝒃
+
𝟏

𝒄
) − 𝟗. 

Let 

𝒂 ≥ 𝒃 ≥ 𝟏 ≥ 𝒄. 

For fixed 𝒂, assume that 𝒄 and 𝑭 are functions of 𝒃. By differentiating the equality 

constraint, we get 

𝒃𝟒 + 𝒄𝟒𝒂′ = 𝟎,      𝒄′ = −𝒃𝟒𝒄−𝟒, 

therefore  
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𝑭′(𝒃) = 𝟑(𝒃𝟐 + 𝒄𝟐𝒄′) (
𝟏

𝒂
+
𝟏

𝒃
+
𝟏

𝒄
) + (𝒂𝟑 + 𝒃𝟑 + 𝒄𝟑) (

−𝟏

𝒃𝟐
+
−𝒄′

𝒄𝟐
) 

= 𝟑(𝒃𝟐 − 𝒃𝟒𝒄−𝟐) (
𝟏

𝒂
+
𝟏

𝒃
+
𝟏

𝒄
) + (𝒂𝟑 + 𝒃𝟑 + 𝒄𝟑) (

−𝟏

𝒃𝟐
+ 𝒃𝟒𝒄−𝟔). 

We will show that 𝑭′(𝒃) ≥ 𝟎. Denoting 𝒙 =
𝒃

𝒄
, we have 

𝑭′(𝒃) = −𝟑𝒄𝟐(𝒙𝟒 − 𝒙𝟐) (
𝟏

𝒂
+
𝟏

𝒃
+
𝟏

𝒄
) + 𝒃−𝟐(𝒂𝟑 + 𝒃𝟑 + 𝒄𝟑)(𝒙𝟔 − 𝟏). 

Since 𝒙 ≥ 𝟏 and 𝒂 ≥ 𝒃, we have 

𝑭′(𝒃) = −𝟑𝒄𝟐(𝒙𝟒 − 𝒙𝟐) (
𝟐

𝒃
+
𝟏

𝒄
) + 𝒃−𝟐(𝟐𝒃𝟑 + 𝒄𝟑)(𝒙𝟔 − 𝟏), 

hence  

𝑭′(𝒃)

𝒄
≥ −𝟑(𝒙𝟒 − 𝒙𝟐) (

𝟐

𝒙
+ 𝟏) + (𝟐𝒙 +

𝟏

𝒙𝟐
) (𝒙𝟔 − 𝟏) 

=
(𝒙𝟐 − 𝟏)(𝟐𝒙𝟕 + 𝟐𝒙𝟓 − 𝟐𝒙𝟒 − 𝟒𝒙𝟑 + 𝒙𝟐 + 𝟏)

𝒙𝟐
 

=
(𝒙𝟐 − 𝟏)(𝒙 − 𝟏)(𝟐𝒙𝟔 + 𝟐𝒙𝟓 + 𝟒𝒙𝟒 + 𝟐𝒙𝟑 − 𝟐𝒙𝟐 − 𝒙− 𝟏)

𝒙𝟐
≥ 𝟎. 

From 𝑭′(𝒃) ≥ 𝟎, it follows that 𝑭(𝒃) is increasing and has the minimum value when 𝒃 is 

minimum, hence when 𝒃 = 𝟏. Thus, it suffices to prove the desired inequality for 𝒃 = 𝟏. 

We need to show that 

(𝒂𝟑 + 𝒄𝟑 + 𝟏) (
𝟏

𝒂
+
𝟏

𝒄
+ 𝟏) ≥ 𝟗 

for 𝒂 ≥ 𝟏 ≥ 𝒄 > 0 such that 𝒂𝟓 + 𝒄𝟓 = 𝟐. Let 𝑺 =
𝒂+𝒄

𝟐
>

𝟏

𝟐
 and 𝒑 = 𝒂𝒄. From the known 

inequality 𝒂𝟓 + 𝒄𝟓 ≥ 𝟐𝑺𝟓, we get 𝑺 ≤ 𝟏, and from 

𝟐 = 𝒂𝟓 + 𝒄𝟓 = (𝒂𝟐 + 𝒄𝟐)(𝒂𝟑 + 𝒄𝟑) − 𝒂𝟐𝒄𝟐(𝒂 + 𝒄) = (𝟒𝑺𝟐 − 𝟐𝒑)(𝟖𝑺𝟑 − 𝟔𝑺𝒑) − 𝟐𝑺𝒑𝟐, 

we obtain 

𝟓𝑺𝒑𝟐 = 𝟐𝟎𝑺𝟑𝒑 − 𝟏𝟔𝑺𝟓 + 𝟏,   𝒑 = 𝟐𝑺𝟐 −√
𝟒𝑺𝟓 + 𝟏

𝟓𝑺
. 

We claim that 

𝒑 ≤
𝟓𝑺𝟐 − 𝟏

𝟒
, 
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that is 

√
𝟒𝑺𝟓 + 𝟏

𝟓𝑺
≥
𝟑𝑺𝟐 + 𝟏

𝟒
. 

By squaring, the inequality becomes 

𝟏𝟔(𝟒𝑺𝟓 + 𝟏) ≥ 𝟓𝑺(𝟑𝑺𝟐 + 𝟏)𝟐,    𝟏𝟗𝑺𝟓 − 𝟑𝟎𝑺𝟑 − 𝟓𝒔 + 𝟏𝟔 ≥ 𝟎, 

(𝑺 − 𝟏)𝟐(𝟏𝟗𝑺𝟑 + 𝟑𝟖𝑺𝟐 + 𝟐𝟕𝑺 + 𝟏𝟔) ≥ 𝟎 

Write now the desired inequality as follows: 

(𝟖𝑺𝟑 − 𝟔𝑺𝒑 + 𝟏) (
𝟐𝑺

𝒑
+ 𝟏) ≥ 𝟗,   𝟑𝑺𝒑𝟐 + 𝟐(𝟐 + 𝟑𝑺𝟐 − 𝟐𝑺𝟑)𝒑 − 𝑺(𝟖𝑺𝟑 + 𝟏) ≤ 𝟎, 

𝟑(𝟐𝟎𝑺𝟑𝒑 − 𝟏𝟔𝑺𝟓 + 𝟏)

𝟓
+ 𝟐(𝟐 + 𝟑𝑺𝟐 − 𝟐𝑺𝟑)𝒑 − 𝑺(𝟖𝑺𝟑 + 𝟏) ≤ 𝟎, 

𝟒𝟖𝑺𝟓 + 𝟒𝟎𝑺𝟒 + 𝟓𝑺 − 𝟑 ≥ 𝟏𝟎(𝟒𝑺𝟑 + 𝟑𝑺𝟐 + 𝟐)𝒑. 

Since 𝒑 ≤
𝟓𝑺𝟐−𝟏

𝟒
, we have 

𝟒𝟖𝑺𝟓 + 𝟒𝟎𝑺𝟒 + 𝟓𝑺 − 𝟑 − 𝟏𝟎(𝟒𝑺𝟑 + 𝟑𝑺𝟐 + 𝟐)𝒑 ≥ 

≥ 𝟒𝟖𝑺𝟓 + 𝟒𝟎𝑺𝟒 + 𝟓𝑺 − 𝟑 −
𝟓(𝟒𝑺𝟑 + 𝟑𝑺𝟐 + 𝟐)(𝟓𝑺𝟐 − 𝟏)

𝟐
 

=
𝟒 + 𝟏𝟎𝑺 − 𝟑𝟓𝑺𝟐 + 𝟐𝟎𝑺𝟑 + 𝟓𝑺𝟒 − 𝟒𝑺𝟓

𝟐
=
(𝟏 − 𝑺)𝟐(𝟒 + 𝟏𝟖𝑺 − 𝟑𝑺𝟐 − 𝟒𝑺𝟑)

𝟐
≥ 𝟎. 

For 𝒌 = 𝟑  the equality occurs when 𝒂 = 𝒃 = 𝒄 = 𝟏. 

 

UP.572 Prove that 𝟐𝟓 𝟏𝟕⁄  is the largest positive value of the constant 𝒌 such 

that: 

𝟏

𝒂𝟐 + 𝒌
+

𝟏

𝒃𝟐 + 𝒌
+

𝟏

𝒄𝟐 + 𝒌
+

𝟏

𝒅𝟐 + 𝒌
≥

𝟒

𝟏 + 𝒌
 

for any nonnegative real numbers 𝒂, 𝒃, 𝒄, 𝒅 with at most one of them larger 

than 𝟏 and  𝒂𝒃 + 𝒂𝒄 + 𝒂𝒅 + 𝒃𝒄 + 𝒃𝒅 + 𝒄𝒅 = 𝟔. 

Proposed by Vasile Cîrtoaje – Romania  
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Solution by proposer 

Without loss of generality, assume that 𝒂, 𝒃, 𝒄 ∈ [𝟎, 𝟏] and 𝒅 ≥ 𝟏. For 𝒃 = 𝒄 = 𝟏, the 

inequality becomes 

𝟏

𝒂𝟐 + 𝒌
+

𝟏

𝒅𝟐 + 𝒌
≥

𝟐

𝟏 + 𝒌
, 

under the constraint 𝒂𝒅 + 𝟒𝑺 = 𝟓, where 𝑺 =
𝒂+𝒅

𝟐
. From 𝟓 = 𝒂𝒅 + 𝟒𝑺 ≤ 𝑺𝟐 + 𝟒𝑺 and  

𝟓 = 𝒂𝒅 + 𝟒𝑺 ≥ 𝟒𝑺, we get 𝟏 ≤ 𝑺 ≤
𝟓

𝟒
. Write the inequality as follows: 

𝟒𝑺𝟐 − 𝟐𝒂𝒅 + 𝟐𝒌

(𝒂𝒅 − 𝒌)𝟐 + 𝟒𝒌𝑺𝟐
≥

𝟐

𝟏 + 𝒌
, 

𝟒𝑺𝟐 − 𝟐(𝟓 − 𝟒𝑺) + 𝟐𝒌

(𝟓 − 𝒌 − 𝟒𝑺)𝟐 + 𝟒𝒌𝑺𝟐
≥

𝟐

𝟏 + 𝒌
, 

(𝑺 − 𝟏)[𝟏𝟓 − 𝟑𝒌 − (𝒌 + 𝟕)𝑺] ≥ 𝟎 

Choosing 𝑺 =
𝟓

𝟒
, we get the necessary condition 𝒌 ≤

𝟐𝟓

𝟏𝟕
. So, we only need to prove the 

original inequality for 𝒌 =
𝟐𝟓

𝟏𝟕
. 

If 𝒄, 𝒅 are fixed, then the expression 

𝑭 =
𝟏

𝒂𝟐 + 𝒌
+

𝟏

𝒃𝟐 + 𝒌
+

𝟏

𝒄𝟐 + 𝒌
+

𝟏

𝒅𝟐 + 𝒌
 

has the minimum value when 

𝑬(𝒂, 𝒃) =
𝟏

𝒂𝟐 + 𝒌
+

𝟏

𝒃𝟐 + 𝒌
 

has the minimum value. Denoting 

𝒙 = 𝒂, 𝒚 = 𝒃, 𝑨 = 𝒄 + 𝒅, 𝑩 = 𝟔 − 𝒄𝒅, 

we have 𝑨 > 0,𝐵 ≥ 0, 𝑥, 𝑦 ∈ [0,1] and 𝒙𝒚 + 𝑨(𝒙 + 𝒚) = 𝑩. For 𝑩 = 𝟎, we have 𝒙 = 𝒚 = 𝟎 

(hence 𝒂 = 𝒃 = 𝟎), while for 𝑩 > 0, by Lemma below, it follows that 𝑬(𝒂, 𝒃) (hence 𝑭, 

too) has the minimum value for 𝐦𝐢𝐧{𝒂, 𝒃} = 𝟎 or 𝒂 = 𝒃. By extending this result to any 

two of 𝒂, 𝒃, 𝒄, it suffices to prove the original inequality for 𝒂 = 𝒃 = 𝒄, for 𝒂 = 𝟎 and 𝒃 =

𝒄, and for 𝒂 = 𝒃 = 𝟎. 

Case 1: 𝒂 = 𝒃 = 𝒄. We need to show that 
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𝟑

𝒄𝟐 + 𝒌
+

𝟏

𝒅𝟐 + 𝒌
≥

𝟒

𝟏 + 𝒌
 

for 𝟎 ≤ 𝒄 ≤ 𝟏 ≤ 𝒅 such that 𝒄𝟐 + 𝒄𝒅 = 𝟐. The inequality is equivalent to 

(𝟏 − 𝒄𝟐)𝟐(𝟑 − 𝒌 − 𝒄𝟐) ≥ 𝟎. 

It is true because 𝟑 − 𝒌 − 𝒄𝟐 ≥ 𝟐 − 𝒌 > 0. 

Case 2: 𝒂 = 𝟎 and 𝒃 = 𝒄. We need to show that: 

𝟏

𝒌
+

𝟐

𝒄𝟐 + 𝒌
+

𝟏

𝒅𝟐 + 𝒌
≥

𝟒

𝟏 + 𝒌
 

for 𝟎 ≤ 𝒄 ≤ 𝟏 ≤ 𝒅 such that 𝒄𝟐 + 𝟐𝒄𝒅 = 𝟔. Write the inequality as follows: 

𝟐

𝒄𝟐 + 𝒌
−

𝟐

𝟏 + 𝒌
≥

𝟐

𝟏 + 𝒌
−
𝟏

𝒌
−

𝟏

𝒅𝟐 + 𝒌
 

𝟐(𝟏 − 𝒄𝟐)

(𝟏 + 𝒌)(𝒄𝟐 + 𝒌)
≥

(𝒌 − 𝟏)(𝟏 − 𝒄𝟐)(𝟑𝟔 − 𝒄𝟐)

𝒌(𝟏 + 𝒌)[𝒄𝟒 − 𝟒(𝟑 − 𝒌)𝒄𝟐 + 𝟑𝟔]
 

It is true if  

𝟐

𝒄𝟐 + 𝒌
≥

(𝒌 − 𝟏)(𝟑𝟔 − 𝒄𝟐)

𝒌[𝒄𝟒 − 𝟒(𝟑 − 𝒌)𝒄𝟐 + 𝟑𝟔]
, 

i.e.  

𝟐𝟓

𝒄𝟐 + 𝒌
≥

𝟒(𝟑𝟔 − 𝒄𝟐)

𝒄𝟒 − 𝟒(𝟑 − 𝒌)𝒄𝟐 + 𝟑𝟔
 

It is true if 

𝟐𝟒

𝟏 + 𝒌
≥

𝟒 ⋅ 𝟑𝟔

𝟎 − 𝟒(𝟑 − 𝒌) + 𝟑𝟔
, 

i.e.  

𝟐

𝟏 + 𝒌
≥

𝟑

𝟔 + 𝒌
,    𝟗 ≥ 𝒌. 

Case 3: 𝒂 = 𝒃 = 𝟎. We need to show that 

𝟐

𝒌
+

𝟏

𝒄𝟐 + 𝒌
+

𝟏

𝒅𝟐 + 𝒌
≥

𝟒

𝟏 + 𝒌
 

for 𝟎 < 𝑐 ≤ 1 ≤ 𝑑 such that 𝒄𝒅 = 𝟔. It is true if 

𝟐

𝒌
+

𝟏

𝟏 + 𝒌
+ 𝟎 ≥

𝟒

𝟏 + 𝒌
, 

i.e. 𝒌 ≤ 𝟐.  
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The proof is completed. For 𝒌 =
𝟐𝟓

𝟏𝟕
, the equality occurs when 𝒂 = 𝒃 = 𝒄 = 𝒅 = 𝟏, and also 

for 𝒂 = 𝟎, 𝒃 = 𝒄 = 𝟏 and 𝒅 =
𝟓

𝟐
 (or any cyclic permutation). 

Lemma. Let 𝑨 and 𝑩 be positive real constants, and let 𝒙, 𝒚 ∈ [𝟎, 𝟏] such that 

𝒙𝒚 + 𝑨(𝒙 + 𝒚) = 𝑩. 

If 𝒌 > 1, then the expression 

𝑬 =
𝟏

𝒙𝟐 + 𝒌
+

𝟏

𝒚𝟐 + 𝒌
 

has the minimum value for 𝐦𝐢𝐧{𝒙, 𝒚} = 𝟎 or 𝒙 = 𝒚. 

Proof.  

Let 𝒔 = 𝒙 + 𝒚 and 𝒑 = 𝒙𝒚. We need to show that if 

𝟎 ≤ 𝟒𝒑 ≤ 𝒔𝟐 

and  

𝒑 + 𝑨𝒔 = 𝑩, 

then the expression 

𝑬 =
𝒔𝟐 − 𝟐𝒑 + 𝟐𝒌

𝒌𝒔𝟐 + (𝒑 − 𝒌)𝟐
 

has the minimum value for 𝒑 = 𝟎 (when 𝐦𝐢𝐧{𝒙, 𝒚} = 𝟎) or 𝟒𝒑 = 𝒔𝟐 (when 𝒙 = 𝒚). From 

𝑩 = 𝒑 + 𝑨𝒔 ≥ 𝒑 + 𝟐𝑨√𝒑, 

we get 

𝒑 ≤ 𝒑𝟏 = (√𝑨𝟐 + 𝑩− 𝑨)
𝟐

, 

with equality for 𝟒𝒑 = 𝒔𝟐. Since 

𝒌𝑬 = 𝟏 +
𝒌𝟐 − 𝒑𝟐

𝒌𝒔𝟐 + (𝒑 − 𝒌)𝟐
= 𝟏 + 𝑭(𝒑), 

where  

𝑭(𝒑) =
𝑨𝟐(𝒌𝟐 − 𝒑𝟐)

(𝑨𝟐 + 𝒌)𝒑𝟐 − 𝟐𝒌(𝑨𝟐 + 𝑩)𝒑 + 𝒌𝟐𝑨𝟐 + 𝒌𝑩𝟐
, 

it suffices to show that 𝑭(𝒑) has the minimum value 𝒎 when 𝒑 = 𝟎 or 𝒑 = 𝒑𝟏. Write the 

inequality 𝑭(𝒑) ≥ 𝒎 as 𝑭𝟏(𝒑) ≥ 𝟎, where  
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𝑭𝟏(𝒑) = −[(𝒎+ 𝟏)𝑨𝟐 + 𝒌𝒎]𝒑𝟐 + 𝟐𝒌𝒎(𝑨𝟐 +𝑩)𝒑 − (𝒎− 𝟏)𝒌𝟐𝑨𝟐 − 𝒌𝒎𝑩𝟐. 

Since 𝑭𝟏(𝒑) is concave on [𝟎, 𝒑𝟏], it has the minimum value 𝟎 when 𝒑 = 𝟎 or 𝒑 = 𝒑𝟏. 

UP.573 Let be 𝝀 > 1 fixed. Find: 

𝐥𝐢𝐦
𝒏→∞

∑
𝒌+ 𝟏

𝝀𝒌

𝒏

𝒌=𝟎

 

Proposed by Marin Chirciu – Romania  

Solution by proposer 

We have the sum of the geometric progression: 

𝟏 + 𝒙 + 𝒙𝟐 +⋯+ 𝒙𝒏 =
𝒙𝒏+𝟏 − 𝟏

𝒙 − 𝟏
, 𝒙 ≠ 𝟏. 

We derive the equality above: 

𝟏 + 𝟐𝒙 + 𝟑𝒙𝟐 +⋯+𝒏𝒙𝒏−𝟏 = (
𝒙𝒏+𝟏 − 𝟏

𝒙 − 𝟏
)

′

=
𝒏𝒙𝒏+𝟏 − (𝒏 + 𝟏)𝒙𝒏 + 𝟏

(𝒙 − 𝟏)𝟐
. 

Multiplying by 𝒙, 𝒙 ≠ 𝟎, the above equality: 

𝒙 + 𝟐𝒙𝟐 + 𝟑𝒙𝟑 +⋯+ 𝒏𝒙𝒏 =
𝒏𝒙𝒏+𝟐 − (𝒏 + 𝟏)𝒙𝒏+𝟏 + 𝒙

(𝒙 − 𝟏)𝟐
. 

Replacing 𝒙 =
𝟏

𝝀
 we obtain: 

∑
𝒌+ 𝟏

𝝀𝒌

𝒏

𝒌=𝟎

=
𝟏

𝝀𝒌
=
𝟏

𝝀
+
𝟏

𝝀𝟐
+
𝟑

𝝀𝟑
+⋯+

𝒏

𝝀𝒏
=

𝒏
𝝀𝒏+𝟐

−
𝒏+ 𝟏
𝝀𝒏+𝟏

+
𝟏
𝝀

(
𝟏
𝝀 − 𝟏)

𝟐 . 

Because 
𝒏

𝝀𝒏+𝟐
→ 𝟎 and 

𝒏+𝟏

𝝀𝒏+𝟏
→ 𝟎 it follows that 

𝒏

𝝀𝒏+𝟐
−
𝒏+𝟏

𝝀𝒏+𝟏
+
𝟏

𝝀

(
𝟏

𝝀
−𝟏)

𝟐 →
𝝀

(𝝀−𝟏)𝟐
 

Then: 

∑
𝟏

𝝀𝒌

𝒏

𝒌=𝟎

= 𝟏 +
𝟏

𝝀
+
𝟏

𝝀𝟐
+⋯+

𝟏

𝝀𝒏
=
𝟏 −

𝟏
𝝀𝒏+𝟏

𝟏 −
𝟏
𝝀

→
𝝀

𝝀 − 𝟏
 

We obtain 𝐥𝐢𝐦
𝒏→∞

∑
𝒌

𝝀𝒌
𝒏
𝒌=𝟎 =

𝝀

(𝝀−𝟏)𝟐
 and 𝐥𝐢𝐦

𝒏→∞
∑

𝟏

𝟏𝟎𝒌
𝒏
𝒌=𝟎 =

𝝀

𝝀−𝟏
 so 
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𝐥𝐢𝐦
𝒏→∞

∑
𝒌+𝟏

𝝀𝒌

𝒏

𝒌=𝟎

= (
𝝀

𝝀 − 𝟏
)
𝟐

 

UP.574 If 𝟎 ≤ 𝒂 ≤ 𝒃 ≤ 𝟏 then: 

∫ ∫ ∫
𝒅𝒙 𝒅𝒚 𝒅𝒛

√𝟏 + 𝒙𝒚𝒛 

𝒃

𝒂

𝒃

𝒂

𝒃

𝒂

≥ (𝒃 − 𝒂)𝟐∫
𝒅𝒙

√𝟏 + 𝒙𝟑

𝒃

𝒂

 

Proposed by Daniel Sitaru – Romania  

Solution by proposer 

Let be 𝒇: [𝟎, 𝟏] → ℝ; 𝒇(𝒙) =
𝟏

√𝟏+𝒆𝟑𝒙
 

𝒇′(𝒙) =
−𝟑𝒆𝟑𝒙

𝟐(𝟏 + 𝒆𝟑𝒙)√𝟏 + 𝒆𝟑𝒙
; 

𝒇′′(𝒙) =
−𝟑𝒆𝟑𝒙(𝟐𝒆𝟑𝒙 − 𝟏)

𝟒(𝟏 + 𝒆𝟑𝒙)𝟐√𝟏 + 𝒆𝟑𝒙
< 0; 𝑥 ∈ [𝟎, 𝟏] 

𝒙 ∈ [𝟎, 𝟏] ⇒ 𝟎 ≤ 𝒙 ≤ 𝟏 ⇒ 𝟎 ≤ 𝟑𝒙 ≤ 𝟑 ⇒ 𝟏 ≤ 𝒆𝟑𝒙 ≤ 𝒆𝟑 

𝟐 ≤ 𝟐𝒆𝟑𝒙 ≤ 𝟐𝒆𝟑 ⇒ 𝟏 ≤ 𝟐𝒆𝟑𝒙 − 𝟏 ≤ 𝟐𝒆𝟑 − 𝟏 

𝟐𝒆𝟑𝒙 − 𝟏 ≥ 𝟏 ⇒ 𝟐𝒆𝟑𝒙 − 𝟏 > 0 ⇒ −3𝒆𝟑𝒙(𝟐𝒆𝟑𝒙 − 𝟏) < 0 

𝒇′′(𝒙) < 0 ⇒ 𝑓 concave. By Jensen’s inequality: 

𝒇(𝒂) + 𝒇(𝒃) + 𝒇(𝒄) ≤ 𝟑𝒇(
𝒂 + 𝒃 + 𝒄

𝟑
) 

𝟏

√𝟏 + 𝒆𝟑𝒂
+

𝟏

√𝟏 + 𝒆𝟑𝒃
+

𝟏

√𝟏 + 𝒆𝟑𝒄
≤

𝟑

√𝟏 + 𝒆𝒂+𝒃+𝒄
 

Denote: 𝒙 = 𝒆𝒂; 𝒚 = 𝒆𝒃; 𝒛 = 𝒆𝒄 ⇒ 

𝟏

√𝟏 + 𝒙𝟑
+

𝟏

√𝟏 + 𝒚𝟑
+

𝟏

√𝟏 + 𝒛𝟑
≤

𝟑

√𝟏 + 𝒙𝒚𝒛
 

∫ ∫ ∫ (
𝟏

√𝟏 + 𝒙𝟑
+

𝟏

√𝟏 + 𝒚𝟑
+

𝟏

√𝟏 + 𝒛𝟑
)

𝒃

𝒂

𝒃

𝒂

𝒃

𝒂

𝒅𝒙 𝒅𝒚 𝒅𝒛 ≤ 𝟑∫ ∫ ∫
𝒅𝒙 𝒅𝒚 𝒅𝒛

√𝟏 + 𝒙𝒚𝒛

𝒃

𝒂

𝒃

𝒂

𝒃

𝒂

 

𝟑(𝒃 − 𝒂)𝟐∫
𝒅𝒙

√𝟏 + 𝒙𝟑

𝒃

𝒂

≤ 𝟑∫ ∫ ∫
𝒅𝒙 𝒅𝒚 𝒅𝒛

√𝟏 + 𝒙𝒚𝒛

𝒃

𝒂

𝒃

𝒂

𝒃

𝒂

 

Equality holds for 𝒂 = 𝒃. 
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UP.575 Calculate: 

𝟐∫ ∫
𝒚(𝒚 + 𝟏)

(𝒙𝟐 + (𝒚 + 𝟏)𝟐)𝟐

∞

𝟎

𝟏

𝟎

𝒅𝒚 𝒅𝒙 

Proposed by Said Attaoui – Oran – Algeria  

Solution 1 by proposer 

Firstly, we can express 

∫ ∫
𝒚(𝒚 + 𝟏)

(𝒙𝟐 + (𝒚 + 𝟏)𝟐)𝟐

∞

𝟎

𝒅𝒙
𝟏

𝟎

𝒅𝒚 = ∫ ∫
𝒚(𝒚 − 𝟏)

(𝒙𝟐 + 𝒚𝟐)𝟐

∞

𝟏

𝒅𝒚
𝟏

𝟎

𝒅𝒙 

Secondly, it is straightforward to confirm that 

𝟏

𝟐

𝝏

𝝏𝒚
(
𝟏 − 𝒚

𝒙𝟐 + 𝒚𝟐
+
𝐚𝐫𝐜𝐭𝐚𝐧 (

𝒚
𝒙
)

𝒙
) =

𝒚(𝒚 − 𝟏)

(𝒙𝟐 + 𝒚𝟐)𝟐
 

Therefore 

𝟐∫ ∫
𝒚(𝒚 + 𝟏)

(𝒙𝟐 + (𝒚 + 𝟏)𝟐)𝟐

∞

𝟎

𝒅𝒚
𝟏

𝟎

𝒅𝒙 = ∫ [
𝟏 − 𝒚

𝒙𝟐 + 𝒚𝟐
+
𝐚𝐫𝐜𝐭𝐚𝐧 (

𝒚
𝒙)

𝒙
]

𝟏

∞
𝟏

𝟎

𝒅𝒙 = 

= ∫ (

𝝅
𝟐
𝒙
−
𝐚𝐫𝐜𝐭𝐚𝐧 (

𝟏
𝒙)

𝒙
)

𝟏

𝟎

𝒅𝒙 = ∫
𝐚𝐫𝐜𝐭𝐚𝐧(𝒙)

𝒙

𝟏

𝟎

𝒅𝒙 = ∫ ∑
(−𝟏)𝒏𝒙𝟐𝒏

𝟐𝒏 + 𝟏

∞

𝒏=𝟎

𝟏

𝟎

𝒅𝒙 = 

= ∑
(−𝟏)𝒏

(𝟐𝒏 + 𝟏)𝟐

∞

𝒏=𝟎

= 𝑮 

Solution 2 by proposer 

Firstly, we can express 

∫ ∫
𝒚(𝒚 + 𝟏)

(𝒙𝟐 + (𝒚 + 𝟏)𝟐)𝟐

∞

𝟎

𝒅𝒙
𝟏

𝟎

𝒅𝒚 = ∫ ∫
𝒚(𝒚 − 𝟏)

(𝒙𝟐 + 𝒚𝟐)𝟐

∞

𝟏

𝒅𝒚
𝟏

𝟎

𝒅𝒙 

Secondly, substituting 𝒚 by 
𝟏

𝒚
, we obtain 

∫ ∫
𝒚(𝒚 − 𝟏)

(𝒙𝟐 + 𝒚𝟐)𝟐
𝒅𝒚

∞

𝟏

𝒅𝒙
𝟏

𝟎

= ∫ ∫

𝟏
𝒚(
𝟏
𝒚 − 𝟏)

(𝒙𝟐 +
𝟏
𝒚𝟐
)
𝟐

𝟏

𝟎

𝟏

𝟎

(
𝟏

𝒚𝟐
𝒅𝒚)𝒅𝒙 = ∫ ∫

(𝟏 − 𝒚)

(𝟏 + 𝒙𝟐𝒚𝟐)𝟐

𝟏

𝟎

𝒅𝒚
𝟏

𝟎

𝒅𝒙 = 
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= ∫ ∫ (𝟏 − 𝒚)
𝟏

𝟎

(∑(−𝟏)𝒏−𝟏𝒏𝒙𝟐(𝒏−𝟏)𝒚𝟐(𝒏−𝟏)
∞

𝒏=𝟏

)𝒅𝒚
𝟏

𝟎

𝒅𝒙 = 

 

= ∑(−𝟏)𝒏−𝟏
∞

𝒏=𝟏

𝒏(∫ 𝒙𝟐𝒏−𝟐𝒅𝒙
𝟏

𝟎

)

𝟐

−∑(−𝟏)𝒏−𝟏𝒏

∞

𝒏

(∫ 𝒙𝟐𝒏−𝟐
𝟏

𝟎

𝒅𝒙)(∫ 𝒚𝟐𝒏−𝟏
𝟏

𝟎

𝒅𝒚) = 

 

= ∑
(−𝟏)𝒏−𝟏𝒏

(𝟐𝒏 − 𝟏)𝟐

∞

𝒏=𝟏

−∑
(−𝟏)𝒏−𝟏𝒏

(𝟐𝒏 − 𝟏)(𝟐𝒏)

∞

𝒏=𝟏

= ∑
(−𝟏)𝒏−𝟏𝒏

(𝟐𝒏 − 𝟏)𝟐

∞

𝒏=𝟏

−
𝟏

𝟐
∑

(−𝟏)𝒏−𝟏

(𝟐𝒏 − 𝟏)

∞

𝒏=𝟏

= 

 

= ∑
(−𝟏)𝒏−𝟏𝒏

(𝟐𝒏 − 𝟏)𝟐

∞

𝒏=𝟏

−
𝟏

𝟐
∑

(−𝟏)𝒏−𝟏(𝟐𝒏 − 𝟏)

(𝟐𝒏 − 𝟏)𝟐

∞

𝒏=𝟏

=
𝟏

𝟐
∑

(−𝟏)𝒏−𝟏

(𝟐𝒏 − 𝟏)𝟐

∞

𝒏=𝟏

. 

Therefore: 

𝟐∫ ∫
𝒚(𝒚 + 𝟏)

(𝒙𝟐 + (𝒚 + 𝟏)𝟐)𝟐
𝒅𝒚

∞

𝟎

𝒅𝒙
𝟏

𝟎

= 𝑮. 

UP.576 Find a closed form: 

∫
𝐚𝐫𝐜𝐭𝐚𝐧(𝒙)

√𝒙𝟏𝟎 + 𝟏
𝟓

∞

𝟎

𝒅𝒙 

Proposed by Vasile Mircea Popa – Romania  

Solution by proposer 

Let us denote: 𝑨 = ∫
𝐚𝐫𝐜𝐭𝐚𝐧(𝒙)

√𝒙𝟏𝟎+𝟏
𝟓

∞

𝟎
𝒅𝒙. 

We also consider the integral: 𝑩 = ∫
𝐚𝐫𝐜𝐜𝐨𝐭(𝒙)

√𝒙𝟏𝟎+𝟏
𝟓

∞

𝟎
𝒅𝒙. 

We have: 

𝑨 + 𝑩 = ∫
𝐚𝐫𝐜𝐭𝐚𝐧(𝒙) + 𝐚𝐫𝐜𝐜𝐨𝐭(𝒙)

√𝒙𝟏𝟎 + 𝟏
𝟓

∞

𝟎

𝒅𝒙 =
𝝅

𝟐
∫

𝟏

√𝒙𝟏𝟎 + 𝟏
𝟓

∞

𝟎

𝒅𝒙 

We are going to calculate the integral: 

𝑪 = ∫
𝟏

√𝒙𝟏𝟎 + 𝟏
𝟓

∞

𝟎

𝒅𝒙. 
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We use the following definition of Euler’s Beta function: 

𝑩(𝒑, 𝒒) = ∫
𝒚𝒑−𝟏

(𝟏 + 𝒚)𝒑+𝒒

∞

𝟎

𝒅𝒚. 

In the 𝑪 integral we make the following variable change: 𝒙𝟏𝟎 = 𝒚. 

We obtain: 

𝑪 =
𝟏

𝟏𝟎
∫

𝒚−
𝟗
𝟏𝟎

(𝟏 + 𝒚)
𝟏
𝟓

∞

𝟎

𝒅𝒚. 

For 𝒑 =
𝟏

𝟏𝟎
 and 𝒒 =

𝟏

𝟏𝟎
 we can write: 

𝑪 =
𝟏

𝟏𝟎
𝑩 (

𝟏

𝟏𝟎
,
𝟏

𝟏𝟎
). 

We use the known relationship: 

𝑩(𝒑, 𝒒) =
𝚪(𝒑)𝚪(𝒒)

𝚪(𝒑+𝒒)
, where 𝚪(𝒂) is the Euler’s Gamma function. 

We can write: 

𝑪 =
𝟏

𝟏𝟎

𝚪𝟐 (
𝟏
𝟏𝟎
)

𝚪 (
𝟏
𝟓)

. 

So we can write: 

𝑨 + 𝑩 =
𝝅

𝟐𝟎

𝚪𝟐 (
𝟏
𝟏𝟎)

𝚪 (
𝟏
𝟓)

. 

In the 𝑩 integral we make the variable change 𝒙 =
𝟏

𝒕
 and we immediately obtain 

𝑩 = 𝑨. 

So we have:  

𝟐𝑨 =
𝝅

𝟐𝟎

𝚪𝟐 (
𝟏
𝟏𝟎)

𝚪 (
𝟏
𝟓)

. 

We obtain the value of the integral required in the problem statement: 
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𝑨 =
𝝅

𝟒𝟎

𝚪𝟐 (
𝟏
𝟏𝟎)

𝚪 (
𝟏
𝟓)

. 

Thus, the problem is solved. 

UP.577 Find a closed form: 

∫
𝒙𝟐 𝐥𝐧 𝒙

𝒙𝟑 + 𝒙√𝒙 + 𝟏

𝟏

𝟎

𝒅𝒙 

Proposed by Vasile Mircea Popa – Romania  

Solution by proposer 

Let us denote: 

𝑰 = ∫
𝒙𝟐 𝐥𝐧 𝒙

𝒙𝟑 + 𝒙√𝒙 + 𝟏

𝟏

𝟎

𝒅𝒙 

In this integral we make the variable change: 𝒙 = 𝒛
𝟐

𝟑. 

We obtain: 

𝑰 =
𝟒

𝟗
∫

𝒛 𝐥𝐧 𝒛

𝒛𝟐 + 𝒛 + 𝟏

𝟏

𝟎

𝒅𝒛. 

We have, successively: 

𝑰 =
𝟒

𝟗
∫

(𝟏 − 𝒛)𝒛 𝐥𝐧 𝒛

𝟏 − 𝒛𝟑

𝟏

𝟎

𝒅𝒛 

𝑰 =
𝟒

𝟗
(∫

𝒛 𝐥𝐧 𝒛

𝟏 − 𝒛𝟑

𝟏

𝟎

𝒅𝒛 − ∫
𝒛𝟐 𝐥𝐧 𝒛

𝟏 − 𝒛𝟑

𝟏

𝟎

𝒅𝒛) 

𝑰 =
𝟒

𝟗
(∫ ∑𝒛𝟑𝒏+𝟏

∞

𝒏=𝟎

𝐥𝐧 𝒛𝒅𝒛
𝟏

𝟎

−∫ ∑𝒛𝟑𝒏+𝟐
∞

𝒏=𝟎

𝟏

𝟎

𝐥𝐧 𝒛 𝒅𝒛) 

𝑰 =
𝟒

𝟗
∑(∫ 𝒛𝟑𝒏+𝟏 𝐥𝐧 𝒛

𝟏

𝟎

𝒅𝒛 − ∫ 𝒛𝟑𝒏+𝟐
𝟏

𝟎

𝐥𝐧 𝒛𝒅𝒛)

∞

𝒏

. 

We will use the following relationship: 

∫ 𝒙𝒂
𝟏

𝟎
𝐥𝐧 𝒙 𝒅𝒙 = −

𝟏

(𝒂+𝟏)𝟐
, where 𝒂 ∈ ℝ,𝒂 ≥ 𝟎. 

We obtain: 
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𝑰 =
𝟒

𝟗
∑ [

𝟏

(𝟑𝒏 + 𝟑)𝟐
−

𝟏

(𝟑𝒏 + 𝟐)𝟐
]

∞

𝒏=𝟎

. 

Or: 

𝑰 =
𝟒

𝟗
∑[

𝟏
𝟗

(𝒏 + 𝟏)𝟐
−

𝟏
𝟗

(𝒏 +
𝟐
𝟑)

𝟐
]

∞

𝒏=𝟎

. 

We now use the following relationship: 

𝝍𝟏(𝒙) = ∑
𝟏

(𝒙 + 𝒏)𝟐

∞

𝒏=𝟎

 

where 𝝍𝟏(𝒙) is the trigamma function. 

We have: 

𝑰 =
𝟒

𝟖𝟏
[𝝍𝟏(𝟏) − 𝝍𝟏 (

𝟐

𝟑
)]. 

The following special value of triagamma function is known: 

𝝍𝟏(𝟏) =
𝝅𝟐

𝟔
 

We obtained the value of the integral required in the problem statement: 

𝑰 =
𝟒

𝟖𝟏
[
𝝅𝟐

𝟔
−𝝍𝟏 (

𝟐

𝟑
)]. 

UP.578 Prove the equality: 

∫
𝒙𝟒√𝒙 𝐥𝐧𝒙

(𝒙 + 𝟏)(𝒙𝟐 + 𝟏)(𝒙𝟒 + 𝟏)

∞

𝟎

𝒅𝒙 =
𝟏

𝟖
𝝅𝟐√𝟓 −

𝟕

√𝟐
 

Proposed by Vasile Mircea Popa – Romania  

Solution by proposer 

Let us denote:  

𝑰 = ∫
𝒙𝟒√𝒙 𝐥𝐧 𝒙

(𝒙 + 𝟏)(𝒙𝟐 + 𝟏)(𝒙𝟒 + 𝟏)

∞

𝟎

𝒅𝒙; 
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𝑨 = ∫
𝒙𝟒√𝒙 𝐥𝐧 𝒙

(𝒙 + 𝟏)(𝒙𝟐 + 𝟏)(𝒙𝟒 + 𝟏)

𝟏

𝟎

𝒅𝒙 = ∫
(𝟏 − 𝒙)𝒙𝟒√𝒙 𝐥𝐧𝒙

𝟏 − 𝒙𝟖

𝟏

𝟎

𝒅𝒙 

𝑩 = ∫
𝒙𝟒√𝒙 𝐥𝐧𝒙

(𝒙 + 𝟏)(𝒙𝟐 + 𝟏)(𝒙𝟒 + 𝟏)

∞

𝟏

𝒅𝒙 = ∫
(𝟏 − 𝒙)𝒙𝟒√𝒙 𝐥𝐧𝒙

𝟏 − 𝒙𝟖

∞

𝟏

𝒅𝒙 

We consider the integral 𝑨. 

We have: 

𝑨 = ∫
𝒙
𝟗
𝟐 𝐥𝐧 𝒙

𝟏 − 𝒙𝟖

𝟏

𝟎

𝒅𝒙 − ∫
𝒙
𝟏𝟏
𝟐 𝐥𝐧 𝒙

𝟏 − 𝒙𝟖

𝟏

𝟎

𝒅𝒙 

We will calculate: 

𝑨𝟏 = ∫
𝒙
𝟗
𝟐 𝐥𝐧 𝒙

𝟏 − 𝒙𝟖

𝟏

𝟎

𝒅𝒙 

We make the variable change: 𝒙𝟖 = 𝒚; 𝒙 = 𝒚
𝟏

𝟖 

We obtain: 

𝑨𝟏 =
𝟏

𝟔𝟒
∫

𝒚−
𝟓
𝟏𝟔 𝐥𝐧 𝒚

𝟏 − 𝒚

𝟏

𝟎

𝒅𝒚 

We will use the following known relationship: 

∫
𝒛𝒂 𝐥𝐧 𝒛

𝟏−𝒛

𝟏

𝟎
𝒅𝒛 = −𝛙𝟏(𝒂 + 𝟏), 𝒂 ∈ 𝑹 ∖ {−𝟏, −𝟐,… },  where 𝝍𝟏(𝒙) is the trigamma function 

We obtain: 

𝑨𝟏 = −
𝟏

𝟔𝟒
𝝍𝟏 (

𝟏𝟏

𝟏𝟔
) 

We will calculate: 

𝑨𝟐 = ∫
𝒙
𝟏𝟏
𝟐 𝐥𝐧 𝒙

𝟏 − 𝒙𝟖

𝟏

𝟎

𝒅𝒙 

Proceeding similarly, we obtain: 

𝑨𝟐 = −
𝟏

𝟔𝟒
𝝍𝟏 (

𝟏𝟑

𝟏𝟔
) 

We obtained the value of the integral 𝑨: 

𝑨 = 𝑨𝟏 − 𝑨𝟐 =
𝟏

𝟔𝟒
[−𝝍𝟏 (

𝟏𝟏

𝟏𝟔
) + 𝝍𝟏 (

𝟏𝟑

𝟏𝟔
)] 
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We conside the integral 𝑩. We make the variable change: 𝒙 =
𝟏

𝒕
. 

We obtain:  

𝑩 = ∫
(𝒕 − 𝟏)𝒕

𝟏
𝟐 𝐥𝐧 𝒕

𝟏 − 𝒕𝟖

𝟏

𝟎

𝒅𝒕 

By proceeding similarly to the integral 𝑨, we obtain: 

𝑩 =
𝟏

𝟔𝟒
[𝝍𝟏 (

𝟑

𝟏𝟔
) − 𝝍𝟏 (

𝟓

𝟏𝟔
)] 

Result: 

𝑰 = 𝑨 + 𝑩 

𝑰 =
𝟏

𝟔𝟒
[−𝝍𝟏 (

𝟏𝟏

𝟏𝟔
) + 𝝍𝟏 (

𝟏𝟑

𝟏𝟔
) + 𝝍𝟏 (

𝟑

𝟏𝟔
) − 𝝍𝟏 (

𝟓

𝟏𝟔
)] 

We use the reflection formula: 

𝝍𝟏 +𝝍𝟏(𝟏 − 𝒙) =
𝝅𝟐

𝐬𝐢𝐧𝟐(𝝅𝒙)
 

We obtain: 

𝝍𝟏 (
𝟑

𝟏𝟔
) + 𝝍𝟏 (

𝟏𝟑

𝟏𝟔
) =

𝝅𝟐

𝐬𝐢𝐧𝟐
𝟑𝝅
𝟏𝟔

; 𝝍𝟏 (
𝟓

𝟏𝟔
) +𝝍𝟏 (

𝟏𝟏

𝟏𝟔
) =

𝝅𝟐

𝐬𝐢𝐧𝟐
𝟓𝝅
𝟏𝟔

; 

Result: 

𝑰 =
𝝅𝟐

𝟔𝟒
(

𝟏

𝐬𝐢𝐧𝟐
𝟑𝝅
𝟏𝟔

−
𝟏

𝐬𝐢𝐧𝟐
𝟓𝝅
𝟏𝟔

) 

We have: 

𝟏

𝐬𝐢𝐧𝟐
𝟑𝝅
𝟏𝟔

−
𝟏

𝐬𝐢𝐧𝟐
𝟓𝝅
𝟏𝟔

= 𝟑𝟐𝐬𝐢𝐧𝟑
𝝅

𝟖
 

We propose to the reader to prove this equality. 

Result: 

𝑰 =
𝟏

𝟐
𝝅𝟐 𝐬𝐢𝐧𝟑

𝝅

𝟖
 

We have: 
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𝐬𝐢𝐧
𝝅

𝟖
=
𝟏

𝟐
√𝟐 − √𝟐 

We propose to the reader to prove this equality. 

Result: 

𝑰 =
𝟏

𝟖
𝝅𝟐√𝟓 −

𝟕

√𝟐
 

Thus, the problem is solved. 

UP.579 Find a closed form: 

∫
𝟏

√(𝟏 − 𝒙)𝟐(𝟏 + 𝒙)𝟑
𝟓

𝟏

−𝟏

𝒅𝒙 

Proposed by Vasile Mircea Popa – Romania  

Solution by proposer 

Let us denote:  

𝑰 = ∫
𝟏

√(𝟏 − 𝒙)𝟐(𝟏 + 𝒙)𝟑
𝟓

𝟏

−𝟏

𝒅𝒙 

In this integral we make the variable change: 𝟏 + 𝒙 = 𝟐𝒕. 

We obtain: 

𝑰 = ∫ 𝒕−
𝟑
𝟓(𝟏 − 𝒕)−

𝟐
𝟓

𝟏

𝟎

𝒅𝒕. 

We use Euler’s Beta function: 

𝑩(𝒑, 𝒒) = ∫ 𝒙𝒑−𝟏(𝟏 − 𝒙)𝒒−𝟏𝒅𝒙
𝟏

𝟎
, where 𝒑, 𝒒 > 0 

We set conditions: 

𝒑 − 𝟏 = −
𝟑

𝟓
; 𝒒 − 𝟏 = −

𝟐

𝟓
 

Result: 

𝒑 =
𝟐

𝟓
; 𝒒 =

𝟑

𝟓
 

So: 
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𝑰 = 𝑩(
𝟐

𝟓
,
𝟑

𝟓
) =

𝚪 (
𝟐
𝟓)𝚪 (

𝟑
𝟓)

𝚪(𝟏)
= 𝚪 (

𝟐

𝟓
)𝚪 (

𝟑

𝟓𝟎
) 

where 𝚪(𝒂) is Euler’s Gamma function. 

We use the complement formula: 

𝚪(𝒙)𝚪(𝟏 − 𝒙) =
𝝅

𝐬𝐢𝐧(𝝅𝒙)
 

We have: 

𝑰 =
𝝅

𝐬𝐢𝐧 (
𝟐𝝅
𝟓 )

 

The relationship is known: 

𝐬𝐢𝐧 (
𝟐𝝅

𝟓
) =

𝟏

𝟒
√𝟏𝟎+ 𝟐√𝟓 

We obtain: 

𝑰 =
𝟒

√𝟏𝟎 + 𝟐√𝟓
𝝅 

After some elementary calculations we arrive at: 

𝑰 = √𝟐 −
𝟐

√𝟓
𝝅 

We obtained the value of the integral required in the problem statement. 

 

UP.580 If 𝒇: [𝒂, 𝒃] → [−𝟏,∞); 𝒂, 𝒃 ∈ ℝ; 𝒂 ≤ 𝒃; 𝒇 continuous, then: 

(∫ (𝟏 + 𝒇(𝒙))𝒅𝒙
𝒃

𝒂

)

𝟑

≥ (𝒃 − 𝒂)𝟑 + 𝟑(𝒃 − 𝒂)𝟐∫ 𝒇(𝒙)
𝒃

𝒂

𝒅𝒙 

Proposed by Daniel Sitaru – Romania  

Solution by proposer 

First we recall Bernoulli’s generalized inequality: 

If 𝒏 ∈ ℕ∗; 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏 ∈ [−𝟏,∞); 𝒙𝒊 ⋅ 𝒙𝒋 ≥ 𝟎; (∀)𝒊, 𝒋 ∈ 𝟏, 𝒏 then: 

(𝟏 + 𝒙𝟏)(𝟏 + 𝒙𝟐) ⋅ … ⋅ (𝟏 + 𝒙𝒏) ≥ 𝟏 + 𝒙𝟏 + 𝒙𝟐 +⋯+ 𝒙𝒏      (1) 
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For 𝒏 = 𝟐 we must prove that: 

(𝟏 + 𝒙𝟏)(𝟏 + 𝒙𝟐) ≥ 𝟏 + 𝒙𝟏 + 𝒙𝟐 

𝟏 + 𝒙𝟏 + 𝒙𝟐 + 𝒙𝟏𝒙𝟐 ≥ 𝟏 + 𝒙𝟏 + 𝒙𝟐 

𝒙𝟏𝒙𝟐 ≥ 𝟎   (True) 

𝑷(𝒏):∏ (𝟏 + 𝒙𝒊)
𝒏
𝒊=𝟏 ≥ 𝟏 + ∑ 𝒙𝒊

𝒏
𝒊=𝟏     (suppose true) 

𝑷(𝒏 + 𝟏):∏ (𝟏 + 𝒙𝒊)
𝒏+𝟏
𝒊=𝟏 ≥ 𝟏 + ∑ 𝒙𝒊

𝒏+𝟏
𝒊=𝟏  (to prove) 

∏(𝟏+ 𝒙𝒊)

𝒏+𝟏

𝒊=𝟏

= (𝟏 + 𝒙𝒏+𝟏) ⋅∏(𝟏 + 𝒙𝒊)

𝒏

𝒊=𝟏

≥
𝑷(𝒏)

 

≥ (𝟏 + 𝒙𝒏+𝟏) ⋅ (𝟏 +∑𝒙𝒊

𝒏

𝒊=𝟏

) = 

= 𝟏 +∑𝒙𝒊

𝒏

𝒊=𝟏

+ 𝒙𝒏+𝟏 + 𝒙𝒏+𝟏 ⋅∑𝒙𝒊

𝒏

𝒊=𝟏

≥ 𝟏 +∑𝒙𝒊

𝒏+𝟏

𝒊=𝟏

 

∑𝒙𝒊

𝒏+𝟏

𝒊=𝟏

+∑𝒙𝒊

𝒏

𝒊=𝟏

⋅ 𝒙𝒏+𝟏 ≥ ∑𝒙𝒊

𝒏+𝟏

𝒊=𝟏

 

∑ 𝒙𝒊
𝒏
𝒊=𝟏 ⋅ 𝒙𝒏+𝟏 ≥ 𝟎    (true) 

𝑷(𝒏) → 𝑷(𝒏 + 𝟏) 

We take in (1): 

𝒙𝟏 = 𝒇(𝒙); 𝒙𝟐 = 𝒇(𝒚); 𝒙𝟑 = 𝒇(𝒛); 𝒙𝟏, 𝒙𝟐, 𝒙𝟑 ∈ [−𝟏,∞) 

(𝟏 + 𝒇(𝒙))(𝟏 + 𝒇(𝒚))(𝟏 + 𝒇(𝒛)) ≥ 𝟏 + 𝒇(𝒙) + 𝒇(𝒚) + 𝒇(𝒛) 

By integrating: 

∫ ∫ ∫ (𝟏 + 𝒇(𝒙))
𝒃

𝒂

𝒃

𝒂

𝒃

𝒂

(𝟏 + 𝒇(𝒚))(𝟏 + 𝒇(𝒛))𝒅𝒙𝒅𝒚𝒅𝒛 ≥ 

≥ ∫ ∫ ∫ (𝟏 + 𝒇(𝒙) + 𝒇(𝒚) + 𝒇(𝒛))
𝒃

𝒂

𝒃

𝒂

𝒃

𝒂

𝒅𝒙𝒅𝒚𝒅𝒛 

(∫ 𝒇(𝒙)
𝒃

𝒂

𝒅𝒙)(∫ 𝒇(𝒚)
𝒃

𝒂

𝒅𝒚)(∫ 𝒇(𝒛)
𝒃

𝒂

𝒅𝒛) ≥ ∫ ∫ ∫ 𝒅𝒙
𝒃

𝒂

𝒅𝒚
𝒃

𝒂

𝒅𝒛 +
𝒃

𝒂

 

+∫ ∫ ∫ 𝒇(𝒙)
𝒃

𝒂

𝒅𝒙
𝒃

𝒂

𝒅𝒚
𝒃

𝒂

𝒅𝒛 + ∫ ∫ ∫ 𝒇(𝒚)
𝒃

𝒂

𝒅𝒙
𝒃

𝒂

𝒅𝒚
𝒃

𝒂

𝒅𝒛 +∫ ∫ ∫ 𝒇(𝒛)
𝒃

𝒂

𝒅𝒙
𝒃

𝒂

𝒅𝒚
𝒃

𝒂

𝒅𝒛 
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(∫ 𝒇(𝒙)
𝒃

𝒂

𝒅𝒙)

𝟑

≥ (𝒃 − 𝒂)𝟑 + 𝟑∫ 𝒇(𝒙)
𝒃

𝒂

𝒅𝒙 ⋅ ∫ ∫ 𝒅𝒚
𝒃

𝒂

𝒅𝒛
𝒃

𝒂

 

(∫ 𝒇(𝒙)
𝒃

𝒂

𝒅𝒙)

𝟑

≥ (𝒃 − 𝒂)𝟑 + 𝟑(𝒃 − 𝒂)𝟐∫ 𝒇(𝒙)
𝒃

𝒂

𝒅𝒙 

Equality holds for 𝒂 = 𝒃. 

UP.581 If 𝟏 ≤ 𝒂 ≤ 𝒃 then: 

𝟐𝟒(𝒃 − 𝒂)𝟐 𝐥𝐧
𝒃

𝒂
+ (𝒃𝟐 − 𝒂𝟐)𝟑 ≥ 𝟏𝟐(𝒃 − 𝒂)𝟐(𝒃𝟐 − 𝒂𝟐) + 𝟐𝟒 𝐥𝐧𝟑 (

𝒃

𝒂
) 

Proposed by Daniel Sitaru – Romania  

Solution by proposer 

The inequality can be written: 

𝟑(𝒃 − 𝒂)𝟐 𝐥𝐧
𝒃

𝒂
+ (

𝒃𝟐 − 𝒂𝟐

𝟐
)

𝟑

≥ 𝟑(𝒃 − 𝒂)𝟐 (
𝒃𝟐 − 𝒂𝟐

𝟐
) + 𝐥𝐧𝟑 (

𝒃

𝒂
) 

𝟑∫ 𝒅𝒙
𝒃

𝒂

⋅ ∫ 𝒅𝒚
𝒃

𝒂

⋅ ∫
𝟏

𝒛

𝒃

𝒂

𝒅𝒛 + (∫ 𝒙
𝒃

𝒂

𝒅𝒙)

𝟑

≥ 

≥ 𝟑∫ 𝒅𝒙
𝒃

𝒂

∫ 𝒅𝒚
𝒃

𝒂

∫ 𝒛
𝒃

𝒂

𝒅𝒛 + ∫
𝟏

𝒙

𝒃

𝒂

𝒅𝒙∫
𝟏

𝒚

𝒃

𝒂

𝒅𝒚 +∫
𝟏

𝒛

𝒃

𝒂

𝒅𝒛 

𝟑∫ ∫ ∫
𝟏

𝒙

𝒃

𝒂

𝒅𝒙
𝒃

𝒂

𝒅𝒚
𝒃

𝒂

𝒅𝒛 +∫ ∫ ∫ 𝒙𝒚𝒛
𝒃

𝒂

𝒅𝒙
𝒃

𝒂

𝒅𝒚
𝒃

𝒂

𝒅𝒛 ≥ 

≥ 𝟑∫ ∫ ∫ 𝒙
𝒃

𝒂

𝒅𝒙
𝒃

𝒂

𝒅𝒚
𝒃

𝒂

𝒅𝒛 + ∫ ∫ ∫
𝟏

𝒙𝒚𝒛
𝒅𝒙

𝒃

𝒂

𝒅𝒚
𝒃

𝒂

𝒅𝒛
𝒃

𝒂

 

∫ ∫ ∫ (
𝟏

𝒙
+
𝟏

𝒚
+
𝟏

𝒛
+ 𝒙𝒚𝒛)

𝒃

𝒂

𝒅𝒙
𝒃

𝒂

𝒅𝒚
𝒃

𝒂

𝒅𝒛 ≥ 

≥ ∫ ∫ ∫ (𝒙 + 𝒚 + 𝒛 +
𝟏

𝒙𝒚𝒛
)

𝒃

𝒂

𝒅𝒙
𝒃

𝒂

𝒅𝒚
𝒃

𝒂

𝒅𝒛 

It is enough to prove that: 

𝟏

𝒙
+

𝟏

𝒚
+

𝟏

𝒛
+ 𝒙𝒚𝒛 ≥ 𝒙 + 𝒚 + 𝒛 +

𝟏

𝒙𝒚𝒛
         (1) 

We will prove by mathematical induction that: 
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𝑷(𝒏):∑
𝟏

𝒙𝒊

𝒏

𝒊=𝟏

+ 𝒙𝟏𝒙𝟐…𝒙𝒏 ≥∑𝒙𝒊

𝒏

𝒊=𝟏

+
𝟏

𝒙𝟏𝒙𝟐 ⋅ … ⋅ 𝒙𝒏
 

For 𝒙𝟏 = 𝒙;𝒙𝟐 = 𝒚;𝒙𝟑 = 𝒛; 𝒏 = 𝟑 we obtain (1) by (2). 

Suppose 𝑷(𝒏) true: 

𝑷(𝒏 + 𝟏):∑
𝟏

𝒙𝒊

𝒏+𝟏
𝒊=𝟏 + 𝒙𝟏𝒙𝟐…𝒙𝒏𝒙𝒏+𝟏 ≥ ∑ 𝒙𝒊

𝒏+𝟏
𝒊=𝟏 +

𝟏

𝒙𝟏𝒙𝟐⋅…⋅𝒙𝒏𝒙𝒏+𝟏
     (to prove) 

∑
𝟏

𝒙𝒊

𝒏+𝟏

𝒊=𝟏

+ 𝒙𝟏𝒙𝟐…𝒙𝒏𝒙𝒏+𝟏 =∑
𝟏

𝒙𝒊

𝒏

𝒊=𝟏

+
𝟏

𝒙𝒏+𝟏
+ 𝒙𝟏𝒙𝟐…𝒙𝒏𝒙𝒏+𝟏 = 

=∑
𝟏

𝒙𝒊

𝒏

𝒊=𝟏

+ 𝒙𝟏𝒙𝟐…𝒙𝒏 − 𝒙𝟏𝒙𝟐 ⋅ … ⋅ 𝒙𝒏 +
𝟏

𝒙𝒏+𝟏
+ 𝒙𝟏𝒙𝟐…𝒙𝒏𝒙𝒏+𝟏 ≥ 

≥
𝑷(𝒏)

∑𝒙𝒊

𝒏

𝒊=𝟏

+
𝟏

𝒙𝟏𝒙𝟐…𝒙𝒏
− 𝒙𝟏𝒙𝟐…𝒙𝒏 +

𝟏

𝒙𝒏+𝟏
+ 𝒙𝟏𝒙𝟐…𝒙𝒏𝒙𝒏+𝟏 

Denote 𝒚 = 𝒙𝟏𝒙𝟐 ⋅ … ⋅ 𝒙𝒏. Remains to prove that: 

∑𝒙𝒊

𝒏

𝒊=𝟏

+
𝟏

𝒚
− 𝒚 +

𝟏

𝒙𝒏+𝟏
+ 𝒚𝒙𝒏+𝟏 ≥∑𝒙𝒊

𝒏+𝟏

𝒊=𝟏

+
𝟏

𝒚𝒙𝒏+𝟏
 

𝟏

𝒚
− 𝒚 +

𝟏

𝒙𝒏+𝟏
+ 𝒚𝒙𝒏+𝟏 ≥ 𝒙𝒏+𝟏 +

𝟏

𝒚𝒙𝒏+𝟏
 

Let’s observe that: 

𝒚 ≥ 𝟏; 𝒙𝒏+𝟏 ≥ 𝟏;𝒚𝒙𝒏+𝟏 ≥ 𝟏 or 

𝒚 − 𝟏 ≥ 𝟎; 𝒙𝒏+𝟏 − 𝟏 ≥ 𝟎;𝒚𝒙𝒏+𝟏 − 𝟏 ≥ 𝟎       (3) 

𝒚𝒙𝒏+𝟏 − 𝒙𝒏+𝟏 +
𝟏

𝒙𝒏+𝟏
−

𝟏

𝒚𝒙𝒏+𝟏
+

𝟏

𝒚
− 𝒚 ≥ 𝟎    (to prove) 

𝒙𝒏+𝟏(𝒚 − 𝟏) +
𝟏

𝒙𝒏+𝟏
(𝟏 −

𝟏

𝒚
) −

𝒚𝟐 − 𝟏

𝒚
≥ 𝟎 

𝒙𝒏+𝟏(𝒚 − 𝟏) +
𝟏

𝒙𝒏+𝟏
⋅
𝒚 − 𝟏

𝒚
−
(𝒚 − 𝟏)(𝒚 + 𝟏)

𝒚
≥ 𝟎 

(𝒚 − 𝟏) (𝒙𝒏+𝟏 +
𝟏

𝒚𝒙𝒏+𝟏
−
𝒚 + 𝟏

𝒚
) ≥ 𝟎 

(𝒚 − 𝟏) (𝒙𝒏+𝟏 − 𝟏 +
𝟏

𝒚𝒙𝒏+𝟏
−
𝟏

𝒚
) ≥ 𝟎 
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(𝒚 − 𝟏) (𝒙𝒏+𝟏 − 𝟏 −
𝒙𝒏+𝟏 − 𝟏

𝒚𝒙𝒏+𝟏
) ≥ 𝟎 

(𝒚 − 𝟏)(𝒙𝒏+𝟏 − 𝟏) (𝟏 −
𝟏

𝒚𝒙𝒏+𝟏
) ≥ 𝟎 

(𝒚 − 𝟏)(𝒙𝒏+𝟏 − 𝟏)(𝒚𝒙𝒏+𝟏 − 𝟏) ≥ 𝟎     (true by (3)) 

Equality holds for 𝒂 = 𝒃. 

UP.582 Prove that exists 𝑿 ∈ 𝑴𝟐,𝟑(ℝ); 𝒀 ∈ 𝑴𝟑,𝟐(ℝ) such that: 

𝑿 ⋅ 𝒀 = (
𝟏 𝟏
𝟏 𝟏

) ; 𝒀 ⋅ 𝑿 = (
𝟐 𝟔 𝟔
𝟑 𝟗 𝟗
−𝟑 −𝟗 −𝟗

) 

Proposed by Daniel Sitaru – Romania  

Solution by proposer 

Let be: 

𝑿 = (
𝟏 𝒂 𝒃
𝟏 𝒂 𝒃

) ;𝒀 = (
𝟏 𝟏
−𝒃 𝟐𝒃
𝒂 −𝟐𝒂

) ;𝒂, 𝒃 ∈ ℝ 

𝑿 ⋅ 𝒀 = (
𝟏 𝒂 𝒃
𝟏 𝒂 𝒃

) ⋅ (
𝟏 𝟏
−𝒃 𝟐𝒃
𝒂 −𝟐𝒂

) = 

= (
𝟏 − 𝒂𝒃 + 𝒂𝒃 𝟏 + 𝟐𝒂𝒃 − 𝟐𝒂𝒃
𝟏 − 𝒂𝒃 + 𝒂𝒃 𝟏 + 𝟐𝒂𝒃 − 𝟐𝒂𝒃

) = (
𝟏 𝟏
𝟏 𝟏

) 

𝒀 ⋅ 𝑿 = (
𝟏 𝟏
−𝒃 𝟐𝒃
𝒂 −𝟐𝒂

) = (
𝟏 𝒂 𝒃
𝟏 𝒂 𝒃

) = 

= (
𝟏 ⋅ 𝟏 + 𝟏 ⋅ 𝟏 𝟏 ⋅ 𝒂 + 𝟏 ⋅ 𝒂 𝟏 ⋅ 𝒃 + 𝟏 ⋅ 𝒃
−𝒃 ⋅ 𝟏 + 𝟐𝒃 ⋅ 𝟏 −𝒃 ⋅ 𝒂 + 𝟐𝒃 ⋅ 𝒂 −𝒃 ⋅ 𝒃 + 𝟐𝒃 ⋅ 𝒃
𝒂 ⋅ 𝟏 − 𝟐𝒂 ⋅ 𝟏 𝒂 ⋅ 𝒂 − 𝟐𝒂 ⋅ 𝒂 𝒂 ⋅ 𝒃 − 𝟐𝒂 ⋅ 𝒃

) = 

= (
𝟐 𝟐𝒂 𝟐𝒃
𝒃 𝒂𝒃 𝒃𝟐

−𝒂 −𝒂𝟐 −𝒂𝒃

) = (
𝟐 𝟔 𝟔
𝟑 𝟗 𝟗
−𝟑 −𝟗 −𝟗

) 

We take 𝒂 = 𝟑; 𝒃 = 𝟑 hence: 

𝑿 = (
𝟏 𝟑 𝟑
𝟏 𝟑 𝟑

) ; 𝒀 = (
𝟏 𝟏
−𝟑 𝟔
𝟑 −𝟔

) 
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UP.583 Solve for complex numbers: 

𝒙𝟖 + 𝟒𝒙𝟕 + 𝟐𝟐𝒙𝟔 + 𝟓𝟐𝒙𝟓 + 𝟔𝟗𝒙𝟒 + 𝟓𝟔𝒙𝟑 + 𝟐𝟖𝒙𝟐 + 𝟖𝒙 + 𝟏 = 𝟎 

Proposed by Daniel Sitaru – Romania 

Solution by proposer 

𝒙𝟖 + 𝟒𝒙𝟕 + 𝟐𝟐𝒙𝟔 + 𝟓𝟐𝒙𝟓 + 𝟔𝟗𝒙𝟒 + 𝟓𝟔𝒙𝟑 + 𝟐𝟖𝒙𝟐 + 𝟖𝒙 + 𝟏 = 𝟎 

𝒙𝟖 + 𝟖𝒙𝟕 + 𝟐𝟖𝒙𝟔 + 𝟓𝟔𝒙𝟓 + 𝟕𝟎𝒙𝟒 + 𝟓𝟔𝒙𝟑 + 𝟐𝟖𝒙𝟐 + 𝟖𝒙 + 𝟏 − 𝒙𝟖 − 𝟒𝒙𝟕 − 𝟔𝒙𝟔 − 𝟒𝒙𝟓 − 𝒙𝟒 + 𝒙𝟖 = 𝟎 

(𝒙 + 𝟏)𝟖 − 𝒙𝟒(𝒙𝟒 + 𝟒𝒙𝟑 + 𝟔𝒙𝟐 + 𝟒𝒙 + 𝟏) + 𝒙𝟖 = 𝟎 

(𝒙 + 𝟏)𝟖 − 𝒙𝟒(𝒙 + 𝟏)𝟒 + 𝒙𝟖 = 𝟎 

(
𝒙 + 𝟏

𝒙
)
𝟖

− (
𝒙 + 𝟏

𝒙
)
𝟒

+ 𝟏 = 𝟎 

(𝟏 +
𝟏

𝒙
)
𝟖

− (𝟏 +
𝟏

𝒙
)
𝟒

+ 𝟏 = 𝟎 

Denote 
𝟏

𝒙
= 𝒚 

(𝟏 + 𝒚)𝟖 − (𝟏 + 𝒚)𝟒 + 𝟏 = 𝟎 

Denote (𝟏 + 𝒚)𝟒 = 𝒖 

𝒖𝟐 − 𝒖+ 𝟏 = 𝟎 

𝒖𝟏 =
𝟏 + 𝒊√𝟑

𝟐
= 𝐜𝐨𝐬

𝝅

𝟑
+ 𝒊 𝐬𝐢𝐧

𝝅

𝟑
 

𝒖𝟐 =
𝟏 − 𝒊√𝟑

𝟐
= 𝐜𝐨𝐬

𝟓𝝅

𝟑
+ 𝒊 𝐬𝐢𝐧

𝟓𝝅

𝟑
 

(𝟏 + 𝒚)𝟒 = 𝒖𝟏 

(𝟏 + 𝒚)𝟒 = 𝐜𝐨𝐬
𝝅

𝟑
+ 𝒊 𝐬𝐢𝐧

𝝅

𝟑
 

𝟏 + 𝒚 = √𝐜𝐨𝐬
𝝅

𝟑
+ 𝒊 𝐬𝐢𝐧

𝝅

𝟑

𝟒
= {𝒛𝟎, 𝒛𝟏, 𝒛𝟐, 𝒛𝟑} 

𝒛𝒌 = 𝐜𝐨𝐬

𝝅
𝟑 + 𝟐𝒌𝝅

𝟒
+ 𝒊 𝐬𝐢𝐧

𝝅
𝟑 + 𝟐𝒌𝝅

𝟒
; 𝒌 ∈ 𝟎, 𝟑 

𝒛𝒌 = 𝐜𝐨𝐬
𝝅 + 𝟔𝒌𝝅

𝟏𝟐
+ 𝒊 𝐬𝐢𝐧

𝝅 + 𝟔𝒌𝝅

𝟏𝟐
; 𝒌 ∈ 𝟎, 𝟑 

(𝟏 + 𝒚)𝟒 = 𝒖𝟐 
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𝟏 + 𝒚 = √𝐜𝐨𝐬
𝟓𝝅

𝟑
+ 𝒊 𝐬𝐢𝐧

𝟓𝝅

𝟑

𝟒

= {𝒛𝟎
′ , 𝒛𝟏

′ , 𝒛𝟐
′ , 𝒛𝟑

′ } 

𝒛𝒌
′ = 𝐜𝐨𝐬

𝟓𝝅
𝟑 + 𝟐𝒌𝝅

𝟒
+ 𝒊 𝐬𝐢𝐧

𝟓𝝅
𝟑 + 𝟐𝒌𝝅

𝟒
; 𝒌 ∈ 𝟎, 𝟑 

𝒛𝒌
′ = 𝐜𝐨𝐬

𝟓𝝅 + 𝟔𝒌𝝅

𝟏𝟐
+ 𝒊 𝐬𝐢𝐧

𝟓𝝅 + 𝟔𝒌𝝅

𝟏𝟐
; 𝒌 ∈ 𝟎, 𝟑 

𝒚𝒌 = −𝟏 + 𝒛𝒌; 𝒚𝒌
′ = −𝟏 + 𝒛𝒌

′ ; 𝒌 ∈ 𝟎, 𝟑 

𝟏

𝒙𝒌
= −𝟏 + 𝒛𝒌;

𝟏

𝒙𝒌
′ = −𝟏 + 𝒛𝒌

′ ; 𝒌 ∈ 𝟎, 𝟑 

𝒙𝒌 =
𝟏

−𝟏 + 𝒛𝒌
; 𝒙𝒌

′ =
𝟏

−𝟏 + 𝒛𝒌
′ ; 𝒌 ∈ 𝟎, 𝟑 

The solutions are: 

𝒙𝒌 =
𝟏

−𝟏 + 𝐜𝐨𝐬
𝝅 + 𝟔𝒌𝝅
𝟏𝟐 + 𝒊 𝐬𝐢𝐧

𝝅 + 𝟔𝒌𝝅
𝟏𝟐

; 𝒌 ∈ 𝟎, 𝟑 

𝒙𝒌
′ =

𝟏

−𝟏 + 𝐜𝐨𝐬
𝟓𝝅 + 𝟔𝒌𝝅

𝟏𝟐 + 𝒊 𝐬𝐢𝐧
𝟓𝝅 + 𝟔𝒌𝝅

𝟏𝟐

; 𝒌 ∈ 𝟎, 𝟑 

UP.584 Let 𝒂, 𝒃, 𝒄, 𝒅 > 1 and 𝒇: [𝒂, 𝒃] → [𝒄, 𝒅] a continuous function for 

which ∃𝝀 ∈ (𝒂, 𝒃) such that 

𝒂∫ 𝒇(𝒙)
𝝀

𝒂

𝒅𝒙 + 𝒃∫ 𝒇(𝒙)
𝒃

𝝀

𝒅𝒙 ≥ 𝒂 + 𝒄 

then prove: 

∫
𝒙

𝒇(𝒙)

𝒃

𝒂

𝒅𝒙 ≤ (
𝟏

𝒂
+
𝟏

𝒃
)
𝒃𝟐 − 𝒂𝟐 − 𝟐

𝟐
 

Proposed by Marian Ursărescu and Florică Anastase – Romania  

Solution by the proposers 

Let 𝑭: [𝒂, 𝒃] → ℝ, 𝑭(𝒕) = ∫ 𝒇(𝒙)
𝒕

𝒂
𝒅𝒙. Because 𝒇 is a continuous function, the function 𝑭 is 

derivable and 𝑭′(𝒕) = 𝒇(𝒕), ∀𝒕 ∈ [𝒂, 𝒃] we have: 
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∫ 𝒙𝒇(𝒙)
𝒃

𝒂

𝒅𝒙 =
𝑰𝑩𝑷

𝒙𝑭(𝒙)|𝒂
𝒃 − ∫ 𝑭(𝒙)

𝒃

𝒂

𝒅𝒙 = 𝒃∫ 𝒇(𝒙)
𝒃

𝒂

𝒅𝒙 −∫ 𝑭(𝒙)
𝒃

𝒂

𝒅𝒙 

Using Mean Value Theorem: 

∃𝝀 ∈ (𝒂, 𝒃) such that ∫ 𝑭(𝒙)
𝒃

𝒂
𝒅𝒙 = (𝒃 − 𝒂)𝑭(𝝀) or 

∫ 𝒙𝒇(𝒙)
𝒃

𝒂

𝒅𝒙 = 𝒃∫ 𝒇(𝒙)
𝒃

𝒂

𝒅𝒙 − (𝒃 − 𝒂)𝑭(𝝀) = 

= 𝒃(∫ 𝒇(𝒙)
𝝀

𝒂

𝒅𝒙 + ∫ 𝒇(𝒙)
𝒃

𝝀

𝒅𝒙) − (𝒃 − 𝒂)∫ 𝒇(𝒙)
𝝀

𝒂

𝒅𝒙 = 𝒂∫ 𝒇(𝒙)
𝝀

𝒂

𝒅𝒙 + 𝒃∫ 𝒇(𝒙)
𝒃

𝝀

𝒅𝒙 

Therefore, 

𝒂∫ 𝒇(𝒙)
𝝀

𝒂
𝒅𝒙 + 𝒃∫ 𝒇(𝒙)

𝒃

𝝀
𝒅𝒙 = ∫ 𝒙𝒇(𝒙)𝒅𝒙

𝒃

𝒂
≥ 𝒂 + 𝒄           (1) 

On the other hands, we have: 

(𝒄 − 𝒇(𝒙))(𝒂𝒙 − 𝒙𝒇(𝒙))

𝒇(𝒙)
≤ 𝟎, ∀𝒙 ∈ [𝒂, 𝒃] ⇔ 

𝒂𝒄𝒙

𝒇(𝒙)
− (𝒄𝒙 + 𝒂𝒙) + 𝒙𝒇(𝒙) ≤ 𝟎 ⇔

𝒙

𝒇(𝒙)
≤ (

𝟏

𝒂
+
𝟏

𝒃
)𝒙 −

𝟏

𝒂𝒄
𝒙𝒇(𝒙) ⇔ 

∫
𝒙

𝒇(𝒙)

𝒃

𝒂

𝒅𝒙 ≤ (
𝟏

𝒂
+
𝟏

𝒄
)∫ 𝒙

𝒃

𝒂

𝒅𝒙 −
𝟏

𝒂𝒄
∫ 𝒙𝒇(𝒙)
𝒃

𝒂

𝒅𝒙 ⇔
(𝟏)

 

 

∫
𝒙

𝒇(𝒙)

𝒃

𝒂

𝒅𝒙 ≤ (
𝟏

𝒂
+
𝟏

𝒄
)
𝒃𝟐 − 𝒂𝟐

𝟐
− (

𝟏

𝒂
+
𝟏

𝒄
) ⇔ ∫

𝒙

𝒇(𝒙)

𝒃

𝒂

𝒅𝒙 ≤ (
𝟏

𝒂
+
𝟏

𝒄
)
𝒃𝟐 − 𝒂𝟐 − 𝟐

𝟐
 

UP.585 If 𝒇: (𝟎,∞) → (𝟎,∞); 𝒇 continuous and  

𝒇 (
𝟏

𝒙
) + 𝒇 (

𝟏

𝒚
) = 𝟐𝒇(

𝟏

𝒙+𝒚
) ; (∀)𝒙, 𝒚 > 0 then (∀) 𝒂, 𝒃 > 0: 

∫ ∫ ∫ 𝒇 (
𝟏

𝒙 + 𝒚 + 𝒛
)

𝒃

𝒂

𝒅𝒙
𝒃

𝒂

𝒅𝒚
𝒃

𝒂

𝒅𝒛 = (𝒃 − 𝒂)𝟐∫ 𝒇 (
𝟏

𝒙
)

𝒃

𝒂

𝒅𝒙 

Proposed by Daniel Sitaru – Romania 

Solution 1 by Tapas Das-India 

𝑾𝒆 𝒌𝒏𝒐𝒘 𝒕𝒉𝒂𝒕 ∫ 𝒇(𝒑)𝒅𝒑
𝒏

𝒎

= ∫ 𝒇(𝒒)𝒅𝒒
𝒏

𝒎

 (𝟏) 
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 𝒇 (
𝟏

𝒙
) + 𝒇(

𝟏

𝒚
) = 𝟐𝒇 (

𝟏

𝒙 + 𝒚
)   𝒐𝒓, 𝒇 (

𝟏

𝒙 + 𝒚
) =

𝟏

𝟐
(𝒇 (

𝟏

𝒙
) + 𝒇 (

𝟏

𝒚
))  

 
𝑼𝒔𝒊𝒏𝒈 𝒕𝒉𝒊𝒔 𝒘𝒆 𝒈𝒆𝒕: 

  𝒇 (
𝟏

𝒙 + 𝒚 + 𝒛
) =  𝒇 (

𝟏

𝒙 + (𝒚 + 𝒛)
) =

𝟏

𝟐
(𝒇 (

𝟏

𝒙
) + 𝒇(

𝟏

𝒚 + 𝒛
)) = 

 

=
𝟏

𝟐
(𝒇(

𝟏

𝒙
) +

𝟏

𝟐
(𝒇 (

𝟏

𝒚
) + 𝒇 (

𝟏

𝒛
))) =

𝟏

𝟐
𝒇(
𝟏

𝒙
) +

𝟏

𝟒
𝒇(
𝟏

𝒚
) +

𝟏

𝟒
𝒇 (
𝟏

𝒛
) (𝟐) 

 

∫ ∫ ∫ 𝒇(
𝟏

𝒙 + 𝒚 + 𝒛
)  𝒅𝒙𝒅𝒚𝒅𝒛

𝒃

𝒂

𝒃

𝒂

𝒃

𝒂

=
(𝟐)
∫ ∫ ∫ (

𝟏

𝟐
𝒇 (
𝟏

𝒙
) +

𝟏

𝟒
𝒇(
𝟏

𝒚
) +

𝟏

𝟒
𝒇(
𝟏

𝒛
))𝒅𝒙𝒅𝒚𝒅𝒛

𝒃

𝒂

𝒃

𝒂

𝒃

𝒂

= 

 

=
𝟏

𝟐
∫ ∫ ∫ 𝒇(

𝟏

𝒙
)  𝒅𝒙𝒅𝒚𝒅𝒛

𝒃

𝒂

𝒃

𝒂

𝒃

𝒂

+
𝟏

𝟒
∫ ∫ ∫ 𝒇 (

𝟏

𝒚
)  𝒅𝒙𝒅𝒚𝒅𝒛

𝒃

𝒂

𝒃

𝒂

𝒃

𝒂

+
𝟏

𝟒
∫ ∫ ∫ 𝒇(

𝟏

𝒛
)  𝒅𝒙𝒅𝒚𝒅𝒛

𝒃

𝒂

𝒃

𝒂

𝒃

𝒂

 

 

=
𝟏

𝟐
(𝒚)𝒂

𝒃(𝒛)𝒂
𝒃∫ 𝒇(

𝟏

𝒙
)

𝒃

𝒂

𝒅𝒙 +
𝟏

𝟒
(𝒙)𝒂

𝒃(𝒛)𝒂
𝒃∫ 𝒇(

𝟏

𝒚
)

𝒃

𝒂

𝒅𝒚 +
𝟏

𝟒
(𝒚)𝒂

𝒃(𝒙)𝒂
𝒃∫ 𝒇 (

𝟏

𝒛
)𝒅𝒛

𝒃

𝒂

=
(𝟏)

 

 

=
𝟏

𝟐
 (𝒃 − 𝒂)𝟐∫ 𝒇 (

𝟏

𝒙
)𝒅𝒙

𝒃

𝒂

+
𝟏

𝟒
 (𝒃 − 𝒂)𝟐∫ 𝒇(

𝟏

𝒙
)𝒅𝒙

𝒃

𝒂

+
𝟏

𝟒
 (𝒃 − 𝒂)𝟐∫ 𝒇(

𝟏

𝒙
)𝒅𝒙

𝒃

𝒂

= 

 

= (𝒃 − 𝒂)𝟐∫ 𝒇(
𝟏

𝒙
)𝒅𝒙

𝒃

𝒂

 

Solution 2 by proposer  

𝒇 (
𝟏

𝒙
) + 𝒇 (

𝟏

𝒚
) = 𝟐𝒇 (

𝟏

𝒙+𝒚
)       (1) 

𝒇 (
𝟏

𝒚
) + 𝒇 (

𝟏

𝒛
) = 𝟐𝒇 (

𝟏

𝒚+𝒛
)        (2) 

𝒇 (
𝟏

𝒛
) + 𝒇 (

𝟏

𝒙
) = 𝟐𝒇 (

𝟏

𝒛+𝒙
)         (3) 

By adding (1); (2); (3): 

𝟐(𝒇 (
𝟏

𝒙
) + 𝒇 (

𝟏

𝒚
) + 𝒇 (

𝟏

𝒛
)) = 𝟐(𝒇 (

𝟏

𝒙 + 𝒚
) + 𝒇 (

𝟏

𝒚 + 𝒛
) + 𝒇 (

𝟏

𝒛 + 𝒙
)) 

𝒇 (
𝟏

𝒙
) + 𝒇 (

𝟏

𝒚
) + 𝒇(

𝟏

𝒛
) = 𝒇 (

𝟏

𝒙+𝒚
) + 𝒇(

𝟏

𝒚+𝒛
) + 𝒇 (

𝟏

𝒛+𝒙
)         (4) 
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Replacing 𝒚 → 𝒚 + 𝒛 in (1); 𝒛 → 𝒛 + 𝒙 in (2); 𝒙 → 𝒙 + 𝒚 in (3) we obtain: 

𝒇 (
𝟏

𝒙
) + 𝒇 (

𝟏

𝒚+𝒛
) = 𝟐𝒇 (

𝟏

𝒙+𝒚+𝒛
)         (5) 

𝒇 (
𝟏

𝒚
) + 𝒇 (

𝟏

𝒛+𝒙
) = 𝟐𝒇 (

𝟏

𝒙+𝒚+𝒛
)          (6) 

𝒇 (
𝟏

𝒛
) + 𝒇 (

𝟏

𝒙+𝒚
) = 𝟐𝒇 (

𝟏

𝒙+𝒚+𝒛
)          (7) 

By adding (5); (6); (7): 

𝒇(
𝟏

𝒙
) + 𝒇(

𝟏

𝒚
) + 𝒇 (

𝟏

𝒛
) + 𝒇(

𝟏

𝒚 + 𝒛
) + 𝒇(

𝟏

𝒛 + 𝒙
) + 𝒇 (

𝟏

𝒙 + 𝒚
) = 𝟔𝒇(

𝟏

𝒙 + 𝒚 + 𝒛
) 

Using (4) we obtain: 

𝒇(
𝟏

𝒙
) + 𝒇 (

𝟏

𝒚
) + 𝒇 (

𝟏

𝒛
) + 𝒇(

𝟏

𝒙
) + 𝒇 (

𝟏

𝒚
) + 𝒇(

𝟏

𝒛
) = 𝟔𝒇(

𝟏

𝒙 + 𝒚 + 𝒛
) 

𝟐(𝒇 (
𝟏

𝒙
) + 𝒇 (

𝟏

𝒚
) + 𝒇(

𝟏

𝒛
)) = 𝟔𝒇(

𝟏

𝒙 + 𝒚 + 𝒛
) 

𝟑𝒇(
𝟏

𝒙 + 𝒚 + 𝒛
) = 𝒇 (

𝟏

𝒙
) + 𝒇(

𝟏

𝒚
) + 𝒇 (

𝟏

𝒛
) 

By integrating: 

𝟑∫ ∫ ∫ 𝒇 (
𝟏

𝒙 + 𝒚 + 𝒛
)𝒅𝒙

𝒃

𝒂

𝒅𝒚
𝒃

𝒂

𝒅𝒛
𝒃

𝒂

= 

= ∫ ∫ ∫ (𝒇 (
𝟏

𝒙
) + 𝒇(

𝟏

𝒚
) + 𝒇 (

𝟏

𝒛
))𝒅𝒙

𝒃

𝒂

𝒅𝒚
𝒃

𝒂

𝒅𝒛
𝒃

𝒂

= 

= ∫ 𝒇(
𝟏

𝒙
)

𝒃

𝒂

𝒅𝒙∫ 𝒅𝒚
𝒃

𝒂

∫ 𝒅𝒛
𝒃

𝒂

+∫ 𝒅𝒙
𝒃

𝒂

+∫ 𝒇 (
𝟏

𝒚
)

𝒃

𝒂

𝒅𝒚∫ 𝒅𝒛
𝒃

𝒂

+∫ 𝒅𝒙
𝒃

𝒂

∫ 𝒅𝒚
𝒃

𝒂

∫ 𝒇(
𝟏

𝒛
)

𝒃

𝒂

𝒅𝒛 = 

= (𝒃 − 𝒂)𝟐∫ 𝒇(
𝟏

𝒙
)

𝒃

𝒂

𝒅𝒙 + (𝒃 − 𝒂)𝟐∫ 𝒇(
𝟏

𝒚
)

𝒃

𝒂

𝒅𝒚 + (𝒃 − 𝒂)𝟐∫ 𝒇(
𝟏

𝒛
)

𝒃

𝒂

𝒅𝒛 = 

= 𝟑(𝒃 − 𝒂)𝟐∫ 𝒇 (
𝟏

𝒙
)

𝒃

𝒂

𝒅𝒙 

∫ ∫ ∫ 𝒇 (
𝟏

𝒙 + 𝒚 + 𝒛
)𝒅𝒙

𝒃

𝒂

𝒅𝒚
𝒃

𝒂

𝒅𝒛
𝒃

𝒂

= (𝒃 − 𝒂)𝟐∫ 𝒇(
𝟏

𝒙
)

𝒃

𝒂

𝒅𝒙 

 

 


