
 
In ∆𝑨𝑩𝑪 the following relationship holds: 
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𝑾𝒂𝒍𝒕𝒆𝒓 𝑱𝒂𝒏𝒐𝒖𝒔 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒚: 𝒙′, 𝒚′, 𝒛′;  𝑨, 𝑩, 𝑪 > 𝟎 𝒕𝒉𝒆𝒏 
𝒙′

𝒚′ + 𝒛′
(𝑩 + 𝑪) +
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(𝑨 + 𝑩) ≥ √𝟑(𝑨𝑩 + 𝑩𝑪 + 𝑪𝑨) (𝟏) 

 

𝑳𝒆𝒎𝒎𝒂: ∀ 𝒙, 𝒚, 𝒛 > 𝟎, ∑
𝒙𝟓 + 𝒙𝟐𝒛𝟑

𝒙𝟑𝒚𝟒𝒛 + 𝒙𝒚𝟐𝒛𝟓
≥ √𝟑 ∑

𝟏

𝒙𝟑𝒚𝟑
  

𝑷𝒓𝒐𝒐𝒇: 

(𝒙𝟓 + 𝒙𝟐𝒛𝟑)
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𝑾𝒆 𝒕𝒂𝒌𝒆 𝒙 =  𝐬𝐢𝐧
𝑨

𝟐
 , 𝒚 = 𝐬𝐢𝐧

𝑩

𝟐
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𝒂𝒏𝒅 𝟑 ∑
𝟏

𝒙𝟑𝒚𝟑
≥

𝑨𝑴−𝑮𝑴 𝟗
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≥ 𝟗 × 𝟏𝟔 × 𝟒 = 𝟓𝟕𝟔 = 𝟐𝟒𝟐 (𝟐) 
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= ∑
𝒙𝟓 + 𝒙𝟐𝒛𝟑
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Equality  holds  for an equilateral triangle. 
 
 

 


