
 
In ∆𝑨𝑩𝑪 the following relationship holds: 
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𝑷𝒓𝒐𝒐𝒇:⁡𝑾𝒂𝒍𝒕𝒆𝒓⁡𝑱𝒂𝒏𝒐𝒖𝒔⁡𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒚:⁡𝒙, 𝒚, 𝒛; ⁡𝑨, 𝑩, 𝑪 > 𝟎⁡𝒕𝒉𝒆𝒏 
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Equality  holds  for A=B=C. 


