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  Proposed by Zaza Mzhavanadze-Georgia 

Solution by Soumava Chakraborty-Kolkata-India 
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= 𝟑√𝟑  ∀ ∆ 𝐀𝐁𝐂, ′′ =′′  𝐢𝐟𝐟 ∆ 𝐀𝐁𝐂 𝐢𝐬 𝐞𝐪𝐮𝐢𝒍𝒂𝐭𝐞𝐫𝒂𝒍 (𝐐𝐄𝐃) 
 


