
 
In ∆𝑨𝑩𝑪 the following relationship holds: 
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𝟐𝟒𝒓𝟑

𝟗𝑹𝟑 − 𝟔𝟒𝒓𝟑
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Solution by Tapas Das-India 
𝑳𝒆𝒎𝒎𝒂: ∀ 𝒂, 𝒃, 𝒄 > 𝟎  

𝒂 + 𝟐𝒃

𝒂 + 𝟐𝒄
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𝒃 + 𝟐𝒄
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𝒄 + 𝟐𝒂

𝒄 + 𝟐𝒃
≥ 𝟑 

𝑷𝒓𝒐𝒐𝒇: 𝑾𝒆 𝒏𝒆𝒆𝒅 𝒕𝒐 𝒔𝒉𝒐𝒘: 

 
𝒂 + 𝟐𝒃
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𝑳𝒆𝒕: 𝒂 + 𝟐𝒄 = 𝒙, 𝒃 + 𝟐𝒂 = 𝒚, 𝒄 + 𝟐𝒃 = 𝒛 𝒕𝒉𝒆𝒏 𝒙 + 𝒚 + 𝒛 = 𝟑(𝒂 + 𝒃 + 𝒄)   

  

(𝒂 + 𝒃 + 𝒄) =
𝟏

𝟑
(𝒙 + 𝒚 + 𝒛) 

 
𝑵𝒐𝒘 𝒖𝒔𝒊𝒏𝒈 𝒂𝒃𝒐𝒗𝒆 𝒓𝒆𝒔𝒖𝒍𝒕 𝒇𝒓𝒐𝒎 (𝟏)𝒘𝒆 𝒏𝒆𝒆𝒅 𝒕𝒐 𝒔𝒉𝒐𝒘 ∶ 
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𝑻𝒉𝒊𝒔 𝒊𝒔 𝒕𝒓𝒖𝒆 𝒃𝒚 𝑪𝒂𝒖𝒄𝒉𝒚 𝑺𝒄𝒉𝒘𝒂𝒓𝒛 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 ∶ 
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𝑪𝑩𝑺
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𝟗
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𝟗
(𝟑)𝟑 = 𝟑 =

𝟑𝑹𝟑

𝑹𝟑
=

𝟑𝑹𝟑

𝟗𝑹𝟑 − 𝟖𝑹𝟑
≥

𝑬𝒖𝒍𝒆𝒓
 

𝟑(𝟐𝒓)𝟑

𝟗𝑹𝟑 − 𝟖(𝟐𝒓)𝟑
≥

𝟐𝟒𝒓𝟑

𝟗𝑹𝟑 − 𝟔𝟒𝒓𝟑
 

 
𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒇𝒐𝒓 𝒂𝒏 𝒆𝒒𝒖𝒊𝒍𝒂𝒕𝒆𝒓𝒂𝒍 𝒕𝒓𝒊𝒂𝒏𝒈𝒍𝒆. 

 


