
 
In ∆𝑨𝑩𝑪 the following relationship holds: 
 

∑ (
𝒃 + 𝒄

𝒂
)

𝟐

+
𝑹𝟒

𝒓𝟒
≥ ∑ (

𝒎𝒂 + 𝒎𝒃

𝒎𝒄
)

𝟐

+ 𝟏𝟔  

 
Proposed by Nguyen Van Canh-Vietnam 

Solution by Tapas Das-India 
 

𝑾𝒆 𝒌𝒏𝒐𝒘 𝒕𝒉𝒂𝒕 𝒂𝟐 + 𝒃𝟐 = (𝒂 + 𝒃)𝟐 − 𝟐𝒂𝒃  (𝟏) 
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𝒔(𝒔 − 𝒄)
=

((𝒔 − 𝒂)(𝒔 − 𝒃) + (𝒔 − 𝒃)(𝒔 − 𝒄) + (𝒔 − 𝒄)(𝒔 − 𝒂))

𝒔(𝒔 − 𝒂)(𝒔 − 𝒃)(𝒔 − 𝒄)
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=
𝟑𝒔𝟐 − 𝟐𝒔(𝒂 + 𝒃 + 𝒄) + 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂
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𝟑𝒔𝟐 − 𝟐𝒔. (𝟐𝒔) + 𝒔𝟐 + 𝒓𝟐 + 𝟒𝑹𝒓
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= 

 

=
𝒓(𝟒𝑹 + 𝒓)
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𝑮𝒐𝒕𝒎𝒂𝒏 𝑰𝑰 & 𝒎𝒄≥√𝒔(𝒔−𝒄)
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𝑾𝒆 𝒏𝒆𝒆𝒅 𝒕𝒐 𝒔𝒉𝒐𝒘: 
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 𝟏𝟐 + (
𝑹

𝒓
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𝟒
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 𝒙𝟒 −
𝟐𝟕

𝟒
𝒙𝟐 + 𝟏𝟏 ≥

𝑹

𝒓
=𝒙≥𝟐 (𝑬𝒖𝒍𝒆𝒓)

 𝟎  

 

 𝟒𝒙𝟒 − 𝟐𝟕𝒙𝟐 + 𝟒𝟒 ≥ 𝟎  
 

(𝒙 − 𝟐)(𝟒𝒙𝟑 + 𝟖𝒙𝟐 − 𝟏𝟏𝒙 − 𝟐𝟐) ≥ 𝟎  
 

(𝒙 − 𝟐) ((𝟒𝒙𝟑 − 𝟐𝟐) + 𝒙(𝟖𝒙 − 𝟏𝟏)) ≥ 𝟎   

 

𝒕𝒓𝒖𝒆 𝒂𝒔 𝒙 ≥ 𝟐 𝒂𝒏𝒅 (𝟒𝒙𝟑 − 𝟏𝟏) > 0 , (𝟖𝒙 − 𝟏𝟏) > 0 
 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒇𝒐𝒓 𝒂𝒏 𝒆𝒒𝒖𝒊𝒍𝒂𝒕𝒆𝒓𝒂𝒍 𝒕𝒓𝒊𝒂𝒏𝒈𝒍𝒆. 
 

 


