
 
In ∆𝑨𝑩𝑪 the following relationship holds: 
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⟺ 𝟑(𝒔𝟐 + 𝒓𝟐 + 𝟒𝑹𝒓) ≤ 𝟒𝒔𝟐 ⟺ 𝟑𝒓𝟐 + 𝟏𝟐𝑹𝒓 ≤ 𝒔𝟐 (to prove) 
 

𝒔𝟐 ≥⏞
𝑮𝑬𝑹𝑹𝑬𝑻𝑺𝑬𝑵

𝟏𝟔𝑹𝒓 − 𝟓𝒓𝟐 ≥  𝟑𝒓𝟐 + 𝟏𝟐𝑹𝒓 ⟺ 𝟒𝑹𝒓 ≥ 𝟖𝒓𝟐 ⟺ 𝑹 ≥⏞
𝑬𝑼𝑳𝑬𝑹

𝟐𝒓 
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𝟒𝑹 + 𝒓

𝒓𝒔
≤

𝟏

𝟑𝒓𝟐
⟺ 

 

⟺ 𝒔𝟐 ≥ 𝟏𝟐𝑹𝒓 + 𝟑𝒓𝟐(to prove) 

𝒔𝟐 ≥⏞
𝑮𝑬𝑹𝑹𝑬𝑻𝑺𝑬𝑵

𝟏𝟔𝑹𝒓 − 𝟓𝒓𝟐 ≥  𝟑𝒓𝟐 + 𝟏𝟐𝑹𝒓 ⟺ 𝟒𝑹𝒓 ≥ 𝟖𝒓𝟐 ⟺ 𝑹 ≥⏞
𝑬𝑼𝑳𝑬𝑹

𝟐𝒓 
 

Equality holds for 𝒂 = 𝒃 = 𝒄. 
 


