
 
In ∆𝑨𝑩𝑪 the following relationship holds: 
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𝑾𝒆 𝒏𝒆𝒆𝒅 𝒕𝒐 𝒔𝒉𝒐𝒘,: 
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𝒔𝟒 + 𝟐𝒔𝟐(𝟒𝑹 + 𝒓)𝟐 + (𝟒𝑹 + 𝒓)𝟒 ≥ 𝟐𝟒𝒔𝟐𝑹(𝟒𝑹 + 𝒓) 
 

 𝒔𝟒 − 𝟐𝒔𝟐(𝟏𝟐𝑹(𝟒𝑹 + 𝒓) − (𝟒𝑹 + 𝒓)𝟐) + (𝟒𝑹 + 𝒓)𝟒 ≥ 𝟎 
 𝒔𝟒 − 𝟐𝒔𝟐(𝟒𝑹 + 𝒓)(𝟖𝑹 − 𝒓) + (𝟒𝑹 + 𝒓)𝟒 ≥ 𝟎 

 

𝒔𝟐 (𝒔𝟐 − 𝟐(𝟒𝑹 + 𝒓)(𝟖𝑹 − 𝒓)) + (𝟒𝑹 + 𝒓)𝟒 ≥ 𝟎 

𝒔𝟐(𝟑𝒓(𝟒𝑹 + 𝒓) − 𝟐(𝟒𝑹 + 𝒓)(𝟖𝑹 − 𝒓)) + (𝟒𝑹 + 𝒓)𝟒 ≥
𝒔𝟐≥𝟑𝒓(𝟒𝑹+𝒓)

𝟎 

 
(𝟒𝑹 + 𝒓)𝒔𝟐(𝟑𝒓 − 𝟏𝟔𝑹 + 𝟐𝒓) + (𝟒𝑹 + 𝒓)𝟒 ≥ 𝟎 

(𝟒𝑹 + 𝒓)𝟑 − 𝒔𝟐(𝟏𝟔𝑹 − 𝟓𝒓) ≥ 𝟎 
 

(𝟒𝑹 + 𝒓)𝟑 − (𝟒𝑹𝟐 + 𝟒𝑹𝒓 + 𝟑𝒓𝟐)(𝟏𝟔𝑹 − 𝟓𝒓) ≥
𝑮𝒆𝒓𝒓𝒆𝒕𝒔𝒆𝒏

𝟎 
 

(𝟒𝒙 + 𝟏)𝟑 − (𝟒𝒙𝟐 + 𝟒𝒙 + 𝟑)(𝟏𝟔𝒙 − 𝟓) ≥

𝑹

𝒓
=𝒙≥𝟐

𝟎 
(𝟔𝟒𝒙𝟑 + 𝟒𝟖𝒙𝟐 + 𝟏𝟐𝒙 + 𝟏) − (𝟔𝟒𝒙𝟑 + 𝟒𝟒𝒙𝟐 + 𝟐𝒙 + 𝟓) ≥ 𝟎 

 
𝒙𝟐 − 𝟒𝒙 + 𝟒 ≥ 𝟎 𝒐𝒓, (𝒙 − 𝟐)𝟐 ≥ 𝟎 𝒕𝒓𝒖𝒆 

Equality  holds  for an equilateral triangle. 
 


