
 
𝐈𝐧 𝒂𝐧𝐲 ∆ 𝐀𝐁𝐂 𝐰𝐢𝐭𝐡 𝐧𝒂, 𝐧𝐛, 𝐧𝐜

→ 𝐍𝒂𝐠𝐞𝒍 𝐜𝐞𝐯𝐢𝒂𝐧𝐬, 𝐭𝐡𝐞 𝐟𝐨𝒍𝒍𝐨𝐰𝐢𝐧𝐠 𝐫𝐞𝒍𝒂𝐭𝐢𝐨𝐧𝐬𝐡𝐢𝐩 𝐡𝐨𝒍𝐝𝐬 ∶ 

𝐧𝒂 + 𝐧𝐛 + 𝐧𝐜 + √𝟑(𝐀𝐈 + 𝐁𝐈 + 𝐂𝐈) ≥ (𝟐 + √𝟑)𝐬 

  Proposed by Mohamed Amine Ben Ajiba-Tanger-Morocco 

Solution by Soumava Chakraborty-Kolkata-India 
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⇒ 𝐧𝒂 + 𝐧𝐛 + 𝐧𝐜 + √𝟑(𝐀𝐈 + 𝐁𝐈 + 𝐂𝐈) 

≥
𝐌𝐨𝐡𝒂𝐦𝐞𝐝 𝐀𝐦𝐢𝐧𝐞 𝐁𝐞𝐧 𝐀𝐣𝐢𝐛𝒂

𝟐𝐬 − 𝟑(𝟐√𝟑 − 𝟑)𝐫 + √𝟑 (𝐬 + 𝟑𝐫(𝟐 − √𝟑)) 

(
𝐑𝐞𝐟𝐞𝐫𝐞𝐧𝐜𝐞 ∶ 𝐈𝐧𝐞𝐪𝐮𝒂𝒍𝐢𝐭𝐲 𝐢𝐧 𝐓𝐫𝐢𝒂𝐧𝐠𝒍𝐞 𝐛𝐲 𝐌𝐨𝐡𝒂𝐦𝐞𝐝 𝐀𝐦𝐢𝐧𝐞 𝐁𝐞𝐧 𝐀𝐣𝐢𝐛𝒂 − 𝟕𝟕,

𝐩𝐮𝐛𝐥𝐢𝐬𝐡𝐞𝐝 𝒂𝐭 𝐰𝐰𝐰. 𝐬𝐬𝐦𝐫𝐦𝐡. 𝐫𝐨
) 

= 𝟗𝐫 + 𝟐(𝐬 − 𝟑√𝟑𝐫) + √𝟑(𝟔𝐫 + 𝐬 − 𝟑√𝟑𝐫) = 𝟗𝐫 + 𝟐𝐬 − 𝟔√𝟑𝐫 + 𝟔√𝟑𝐫 + √𝟑𝐬 − 𝟗𝐫 

= (𝟐 + √𝟑)𝐬 ∴ 𝐧𝒂 + 𝐧𝐛 + 𝐧𝐜 + √𝟑(𝐀𝐈 + 𝐁𝐈 + 𝐂𝐈) ≥ (𝟐 + √𝟑)𝐬 ∀ ∆ 𝐀𝐁𝐂, 

 
′′ =′′  𝐢𝐟𝐟 ∆ 𝐀𝐁𝐂 𝐢𝐬 𝐞𝐪𝐮𝐢𝒍𝒂𝐭𝐞𝐫𝒂𝒍 (𝐐𝐄𝐃) 

 


