

ROMANIAN MATHEMATICAL MAGAZINE

In acute ΔABC following relationship holds:

$$\rho_H \leq R - \frac{3r}{2}$$

ρ_H : *inradius of orthic triangle of ΔABC*

Proposed by Mehmet Şahin-Turkiye

Solution by Tapas Das-India

Let ΔDEF is the orthic triangle. The points D, E, F lie on the ninepoint circle then circumradius of ΔDEF is $\frac{R}{2}$, where $R = \text{circumradius of } \Delta ABC$

$$\text{Inradius(Orthic)} \rho_H \stackrel{\text{Euler}}{\leq} \frac{\text{circumradius(Orthic)}}{2}$$
$$\rho_H \leq \frac{1}{2} \left(\frac{R}{2} \right) = \frac{R}{4}$$

We need to show :

$$\rho_H \leq R - \frac{3r}{2} \text{ or } \frac{R}{4} \leq R - \frac{3r}{2} \text{ or } \frac{3R}{4} \geq \frac{3r}{2} \text{ or } R \geq 2r \text{ true by Euler}$$

Equality holds for an equilateral triangle.