
 
In ∆𝑨𝑩𝑪 the following relationship holds: 

 
𝟑

√𝑹
≤ ∑

𝟏

√𝒘𝒂 − 𝒓
≤

𝟑

√𝟐𝒓
 

 
Proposed by Marin Chirciu-Romania 

Solution by Tapas Das-India 
 

∑ 𝒘𝒂 = ∑
𝟐𝒃𝒄

𝒃 + 𝒄
 𝐜𝐨𝐬

𝑨

𝟐
≤

𝑨𝑴−𝑮𝑴
 ∑

𝟐𝒃𝒄

𝟐√𝒃𝒄
 𝐜𝐨𝐬

𝑨

𝟐
= 

= ∑ √𝒃𝒄 𝐜𝐨𝐬
𝑨

𝟐
≤

𝑪𝑩𝑺
√(𝒃𝒄 + 𝒄𝒂 + 𝒂𝒃) (∑ 𝐜𝐨𝐬𝟐

𝑨

𝟐
) = 

= √(𝒔𝟐 + 𝒓𝟐 + 𝟒𝑹𝒓) (
𝟒𝑹 + 𝒓

𝟐𝑹
) ≤

𝑮𝒆𝒓𝒓𝒆𝒕𝒔𝒆𝒏
  

≤  √(𝟒𝑹𝟐 + 𝟒𝑹𝒓 + 𝟑𝒓𝟐 + 𝒓𝟐 + 𝟒𝑹𝒓) (
𝟒𝑹 + 𝒓

𝟐𝑹
) = √

𝟒(𝑹 + 𝒓)𝟐(𝟒𝑹 + 𝒓)

𝟐𝑹
  (𝟏)  

∑
𝟏

√𝒘𝒂 − 𝒓
= ∑

𝟏
𝟑

𝟐

√𝒘𝒂 − 𝒓
≥

𝑹𝒂𝒅𝒐𝒏 (𝟑)
𝟑

𝟐

√∑ 𝒘𝒂 − 𝟑𝒓
 

 𝑾𝒆 𝒏𝒆𝒆𝒅 𝒕𝒐 𝒔𝒉𝒐𝒘: 
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Equality  holds  for an equilateral triangle. 

 


