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Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝐋𝐞𝐭 𝒖 ≔
𝑹

𝒂
, 𝒗 ≔

𝒔

𝒃
, 𝒘 ≔

𝟒𝒓

𝒄
. 𝐖𝐞 𝐡𝐚𝐯𝐞 𝒖𝒗𝒘 = 𝟏. 

𝐖𝐞 𝐡𝐚𝐯𝐞 𝒖𝟐𝑹+𝒓 + 𝒖𝟐𝒓+𝑹 = 𝒖𝟐(𝑹+𝒓) + 𝒖𝑹+𝒓 − 𝒖𝑹+𝒓(𝒖𝑹 − 𝟏)(𝒖𝒓 − 𝟏) ≤ 𝒖𝟐(𝑹+𝒓) + 𝒖𝑹+𝒓, 

𝐛𝐞𝐜𝐚𝐮𝐬𝐞 𝒖𝑹 − 𝟏, 𝒖𝒓 − 𝟏 𝐡𝐚𝐯𝐞 𝐭𝐡𝐞 𝐬𝐚𝐦𝐞 𝐬𝐢𝐠𝐧. 

𝐀𝐧𝐝 𝐬𝐢𝐧𝐜𝐞 𝒖𝑹+𝒓. 𝒗𝑹+𝒓. 𝒘𝑹+𝒓 = 𝟏, 𝐭𝐡𝐞𝐧 ∃𝒙, 𝒚, 𝒛 > 𝟎 𝐬𝐮𝐜𝐡 𝐭𝐡𝐚𝐭 
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= 𝟏.                                            

 

 

 


