

ROMANIAN MATHEMATICAL MAGAZINE

In any ΔABC with M being an arbitrary point in the plane of the triangle,
the following relationship holds :

$$(MA + MB + MC)\sqrt{MA \cdot MB + MB \cdot MC + MC \cdot MA} \geq 4F$$

Proposed by Dang Ngoc Minh-Vietnam

Solution 1 by Soumava Chakraborty-Kolkata-India

For simplicity, we shall denote MA by R_1 , MB by R_2 , MC by R_3 and firstly, we have that : if $F(a, b, c, R_1, R_2, R_3) \geq 0$, then via inversion transformation,

$F(aR_1, bR_2, cR_3, R_2R_3, R_3R_1, R_1R_2) \geq 0 \rightarrow ①$ and when M is situated on one of the vertices of ΔABC (WLOG on the vertex A , say), then :

$$(MA + MB + MC) \cdot \sqrt{MA \cdot MB + MB \cdot MC + MC \cdot MA} = (R_2 + R_3) \cdot \sqrt{R_2 R_3} \stackrel{AM-GM}{\geq} 2R_2 R_3 = 2bc \quad (\because R_2 = c, R_3 = b) \stackrel{?}{\geq} 4F = \frac{4abc}{4R} \Leftrightarrow 2R \stackrel{?}{\geq} 2R \cdot \sin A \Leftrightarrow \sin A \stackrel{?}{\leq} 1$$

\rightarrow true $\therefore (MA + MB + MC) \cdot \sqrt{MA \cdot MB + MB \cdot MC + MC \cdot MA} \geq 4F$ and we now focus on the case when M is not situated on any of the vertices of ΔABC and we have,

via Klamkin's Polar Moment of Inertia, $(xR_1^2 + yR_2^2 + zR_3^2) \left(\frac{1}{yz} + \frac{1}{zx} + \frac{1}{xy} \right) \geq$

$$\frac{a^2}{x} + \frac{y^2}{b} + \frac{z^2}{c} \stackrel{\text{Bergstrom}}{\geq} \frac{(a+b+c)^2}{x+y+z} \stackrel{①}{\Rightarrow}$$

$$(xR_2^2 R_3^2 + yR_3^2 R_1^2 + zR_1^2 R_2^2) \left(\frac{1}{yz} + \frac{1}{zx} + \frac{1}{xy} \right) \geq \frac{(aR_1 + bR_2 + cR_3)^2}{x+y+z}$$

$$\Rightarrow \frac{R_2^2 R_3^2}{yz} + \frac{R_3^2 R_1^2}{zx} + \frac{R_1^2 R_2^2}{xy} \geq \left(\frac{aR_1 + bR_2 + cR_3}{x+y+z} \right)^2 \Rightarrow \frac{R_2^2 R_3^2}{yR_2^2 \cdot zR_3^2} + \frac{R_3^2 R_1^2}{zR_3^2 \cdot xR_1^2} + \frac{R_1^2 R_2^2}{xR_1^2 \cdot yR_2^2}$$

$$\geq \left(\frac{aR_1 + bR_2 + cR_3}{xR_1^2 + yR_2^2 + zR_3^2} \right)^2 \quad (\text{via } x \equiv xR_1^2, y \equiv yR_2^2, z \equiv zR_3^2)$$

$$\Rightarrow \frac{1}{yz} + \frac{1}{zx} + \frac{1}{xy} \geq \left(\frac{aR_1 + bR_2 + cR_3}{xR_1^2 + yR_2^2 + zR_3^2} \right)^2 \Rightarrow yz + zx + xy \geq \left(\frac{aR_1 + bR_2 + cR_3}{\frac{R_1^2}{x} + \frac{R_2^2}{y} + \frac{R_3^2}{z}} \right)^2$$

$$\left(\text{via } x \equiv \frac{1}{x}, y \equiv \frac{1}{y}, z \equiv \frac{1}{z} \right) \Rightarrow \frac{R_1^2}{x} + \frac{R_2^2}{y} + \frac{R_3^2}{z} \geq \frac{aR_1 + bR_2 + cR_3}{\sqrt{xy + yz + zx}}$$

$$\Rightarrow R_1 + R_2 + R_3 \geq \frac{aR_1 + bR_2 + cR_3}{\sqrt{R_1 R_2 + R_2 R_3 + R_3 R_1}} \quad (\text{via } x \equiv R_1, y \equiv R_2, z \equiv R_3)$$

$$\Rightarrow (MA + MB + MC) \cdot \sqrt{MA \cdot MB + MB \cdot MC + MC \cdot MA} \geq aMA + bMB + cMC$$

well-known

$$\geq 4F \therefore \text{combining both cases,}$$

$$(MA + MB + MC) \cdot \sqrt{MA \cdot MB + MB \cdot MC + MC \cdot MA} \geq 4F \quad \forall \Delta ABC$$

with M being an arbitrary point in the plane of the triangle (QED)

ROMANIAN MATHEMATICAL MAGAZINE

Solution 2 by Mohamed Amine Ben Ajiba-Tanger-Morocco

From the polar moment of inertia inequality (Klamkin's inequality), we have,

for any $x, y, z \in \mathbb{R}$,

$$(x + y + z)(xMA^2 + yMB^2 + zMC^2) \geq yza^2 + zx b^2 + xy c^2.$$

For $x = MB \cdot MC, y = MC \cdot MA, z = MA \cdot MB$, we get

$$(MA \cdot MB + MB \cdot MC + MC \cdot MA)(MA + MB + MC) \geq MA \cdot a^2 + MB \cdot b^2 + MC \cdot c^2.$$

Also by Oppenheim's inequality, we have

$$MA \cdot a^2 + MB \cdot b^2 + MC \cdot c^2 \geq 4F \cdot \sqrt{MA \cdot MB + MB \cdot MC + MC \cdot MA}.$$

Using these two inequalities, we get

$$(MA + MB + MC) \sqrt{MA \cdot MB + MB \cdot MC + MC \cdot MA} \geq 4F,$$

as desired.