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𝟎 → 𝐭𝐫𝐮𝐞 ∴ 𝟒𝐑(𝐑 − 𝟐𝐫) ≥ (𝐛 − 𝐜)𝟐 → ① 

𝐈𝐟 𝐧𝒂 ≤ 𝐑, 𝐭𝐡𝐞𝐧, 𝐩𝐫𝐨𝐩𝐨𝐬𝐞𝐝 𝐢𝐧𝐞𝐪𝐮𝒂𝒍𝐢𝐭𝐲 𝐢𝐬 𝐭𝐫𝐢𝐯𝐢𝒂𝒍𝒍𝐲 𝐭𝐫𝐮𝐞 𝒂𝐧𝐝 𝐰𝐡𝐞𝐧 𝐧𝒂 > 𝐑, 𝐭𝐡𝐞𝐧 ∶ 
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𝐨𝐫 (𝐛 = 𝐜 ≠ 𝒂) (𝐐𝐄𝐃) 
 


