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If a,b,c > 0 then prove that :
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Solution 1 by Soumava Chakraborty-Kolkata-India
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Solution 2 by Mirsadix Muzefferov-Azerbaijan
Let's transform the left side of the expression
according to the Walter Janous inequality
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Walter Janous inequality x,y,z,A,B,C >0
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Here : x=;,y=F,Z=E,A= o ,B = b ,C = o
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