
 
𝐈𝐟 𝒙, 𝐲, 𝐳 > 𝟎 𝒂𝐧𝐝 𝒙𝐲𝐳 = 𝟏 𝐭𝐡𝐞𝐧 𝐩𝐫𝐨𝐯𝐞 𝐭𝐡𝒂𝐭 ∶ 
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 𝒂𝐧𝐝 𝐬𝐨, 𝐢𝐧 𝐨𝐫𝐝𝐞𝐫 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 (∗), 
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𝐈𝐧𝐝𝐞𝐞𝐝, 𝒙𝟑 + 𝐳𝟐𝒙 ≥
𝐀𝐌−𝐆𝐌

𝟐𝐳𝒙𝟐, 𝐲𝟑 + 𝒙𝟐𝐲 ≥
𝐀𝐌−𝐆𝐌

𝟐𝒙𝐲𝟐 𝒂𝐧𝐝 𝐳𝟑 + 𝐲𝟐𝐳 ≥
𝐀𝐌−𝐆𝐌
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∴
𝒙

√𝐲𝟐 + 𝟐𝐳
+
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√𝐳𝟐 + 𝟐𝒙
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𝐳

√𝒙𝟐 + 𝟐𝐲
≥ √𝟑 ∀ 𝒙, 𝐲, 𝐳 > 𝟎│𝒙𝐲𝐳 = 𝟏, 

′′ =′′  𝐢𝐟𝐟 𝒙 = 𝐲 = 𝐳 = 𝟏 (𝐐𝐄𝐃) 
 
 


