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If 0 < x,y,z < 1 then prove that :
xy+1+yz+1+zx+1>xy+yz+zx+3
x+y y+z Z+x xX+y+z

Proposed by Nguyen Hung Cuong-Vietnam

Solution by Soumava Chakraborty-Kolkata-India
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= xy+ 1> x + yand analogously,yz+1>y+zandzx +1>z+x-> (1
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Now, via (1), LHS of (x) > 2 ( 2(x+y) ) 1 Z x=1

and

x+y)(x+y+2z) =x+y+z'
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Vxyz> 0|0<x,y,z§1,”=” iffx=y=z=1(QED)



