
 

𝐈𝐟 𝒂, 𝐛, 𝐜 > 𝟎, 𝒂 + 𝐛 + 𝐜 =
𝟑

𝟐
 𝒂𝐧𝐝 𝛌 ≥ 𝟎 𝐭𝐡𝐞𝐧 ∶ 

∑
𝟏 + 𝛌𝐛

𝟏 + 𝟒𝒂𝟐

𝐜𝐲𝐜

≥
𝟑

𝟒
(𝛌 + 𝟐) 
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𝟗

𝟒
=

𝟑

𝟒
(𝛌 + 𝟐) 

∴ ∑
𝟏 + 𝛌𝐛

𝟏 + 𝟒𝒂𝟐

𝐜𝐲𝐜

≥
𝟑

𝟒
(𝛌 + 𝟐) ∀ 𝒂, 𝐛, 𝐜 > 𝟎│𝒂 + 𝐛 + 𝐜 =

𝟑

𝟐
 𝒂𝐧𝐝 𝛌 ≥ 𝟎, 

′′ =′′ 𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 =
𝟏

𝟐
 (𝐐𝐄𝐃) 

 
 


