

ROMANIAN MATHEMATICAL MAGAZINE

Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that:

$$f^2(x) + 2yf(x) + f(y) = f(y + f(x)) \quad \forall x, y \in \mathbb{R}$$

Proposed by Nguyen Hung Cuong-Vietnam

Solution by Tapas Das-India

$$f^2(x) + 2yf(x) + f(y) = f(y + f(x)) \quad \forall x, y \in \mathbb{R} \quad (1)$$

Suppose $f(x) = c$ is constant then the equation becomes

$$c^2 + 2yc + c = c \quad \forall y, \text{ this can only be true if } c = 0$$

Hence one solution is $f(x) \equiv 0$

From (1) we have

$$f(y + f(x)) - f(y) = f^2(x) + 2yf(x) + f(y)$$

R.H.S part has the same form as the algebraic identity

$$(y + a)^2 - y^2 = 2ay + a^2$$

this suggest that $f(y)$ behave like $y^2 + \text{some constant}$.

Let $g(y) = f(y) - y^2$ or $f(y) = g(y) + y^2$ (2)

where $g(y)$ represent the non quadratic part of $f(y)$.

From (1) we have $f(y + f(x)) = f(y) + f^2(x) + 2yf(x) + f(y)$

Using (2) we have:

$$\begin{aligned} g(y + f(x)) + (y + f(x))^2 &= g(y) + y^2 + (g(x) + x^2)^2 + 2y(g(x) + x^2) \\ g(y + f(x)) + y^2 + f^2(x) + 2yf(x) &= g(y) + y^2 + (g(x) + x^2)^2 + 2y(g(x) + x^2) \\ g(y + f(x)) + (g(x) + x^2)^2 + 2y(g(x) + x^2) + 2yf(x) &= g(y) + (g(x) + x^2)^2 + 2y(g(x) + x^2) \\ g(y + f(x)) &= g(y) \end{aligned}$$

$f(x) = g(x) + x^2 \text{ from (2)}$

This equation says that $g(y)$ does not change when its argument increase by $f(x)$ since f is non constant it can take infinitely many values so $g(y)$ must be constant $g(y) = c$ hence $f(y) = g(y) + y^2 = c + y^2$

So solutions are $f(x) \equiv 0$ or $f(x) = x^2 + c$.