

ROMANIAN MATHEMATICAL MAGAZINE

Solve for reals:

$$(x^6)^{x^6} = 6x - 5$$

Proposed by Nguyen Hung Cuong-Vietnam

Solution by Tapas Das-India

As L.H.S > 0 so R.H.S > 0 or $6x - 5 > 0$ or $x > \frac{5}{6}$

$$\text{Let } f(x) = (x^6)^{x^6} - (6x - 5) = x^{6x^6} - (6x - 5)$$

$$f'(x) = 6x^5 x^{6x^6} (6 \ln x + 1) - 6 = 6(x^5 x^{6x^6} (6 \ln x + 1) - 1)$$

*Case 1: $x \in \left(\frac{5}{6}, 1\right)$ then $x^5 x^{6x^6} < 1, 6 \ln x < 1$ for this $f'(x) < 0$
so $f(x)$ is decreasing on $\left(\frac{5}{6}, 1\right)$*

Case 2: $x = 1$ then $f(1) = 1 - (6 - 5) = 0$ so $x = 1$ is root off $f(x) = 0$

*Case 3: $x > 1$ then $\ln x > 0, x^5 x^{6x^6} > 1$ for this $f'(x) > 0$
so $f(x)$ is increasing for $x > 1$*

*Conclusion: $f(x)$ is decreasing on $\left(\frac{5}{6}, 1\right)$ & increasing for $x > 1$ and
at $x = 1 f(x) = 0$*

so required solution $x = 1$.